Author: Skordis, E.
Paper Title Page
TUPMW006 Power Deposition in LHC Magnets Due to Bound-Free Pair Production in the Experimental Insertions 1418
 
  • C. Bahamonde Castro, B. Auchmann, M.I. Besana, K. Brodzinski, R. Bruce, F. Cerutti, J.M. Jowett, A. Lechner, T. Mertens, V. Parma, S. Redaelli, M. Schaumann, N.V. Shetty, E. Skordis, G.E. Steele, R. van Weelderen
    CERN, Geneva, Switzerland
 
  The peak luminosity achieved during Pb-Pb collisions in the LHC in 2015 (3x1027cm-2s−1) well exceeded the design luminosity and is anticipated to increase by another factor 2 after the next Long Shutdown (2019- 2020). A significant fraction of the power dissipated in ultra-peripheral Pb-Pb collisions is carried by ions from bound-free pair production, which are lost in the dispersion suppressors adjacent to the experimental insertions. At higher luminosities, these ions risk to quench superconducting magnets and might limit their operation due to the dynamic heat load that needs to be evacuated by the cryogenic system. In this paper, we estimate the power deposition in superconducting coils and the magnet cold mass and we quantify the achievable reduction by deviating losses to less sensitive locations or by installing collimators at strategic positions. The second option is considered for the dispersion suppressor next to the ALICE insertion, where a selective displacement of losses to a magnet-free region is not possible.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW029 Simulation of Heavy-Ion Beam Losses with the SixTrack-FLUKA Active Coupling 2490
SUPSS008   use link to see paper's listing under its alternate paper code  
 
  • P.D. Hermes, R. Bruce, F. Cerutti, A. Ferrari, J.M. Jowett, A. Lechner, A. Mereghetti, D. Mirarchi, P.G. Ortega, S. Redaelli, B. Salvachua, E. Skordis, G. Valentino, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Funding: Work suppported by the Wolfgang Gentner Programme of the German BMBF
The LHC heavy-ion program aims to further increase the stored ion beam energy, putting high demands on the LHC collimation system. Accurate simulations of the ion collimation efficiency are crucial to validate the feasibility of new proposed configurations and beam parameters. In this paper we present a generalized framework of the SixTrack-FLUKA coupling to simulate the fragmentation of heavy-ions in the collimators and their motion in the LHC lattice. We compare heavy-ion loss maps simulated on the basis of this framework with the loss distributions measured during heavy-ion operation in 2011 and 2015.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)