Author: Seok, J.M.
Paper Title Page
TUOAB01 Optimization of the Dechirper for Electron Bunches of Arbitrary Longitudinal Shapes 1054
SUPSS049   use link to see paper's listing under its alternate paper code  
 
  • J.M. Seok, M. Chung
    UNIST, Ulsan, Republic of Korea
  • J.H. Han, J.H. Hong, H.-S. Kang
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Dechirper is a passive device composed of a vacuum chamber of two corrugated, metallic plates with an adjustable gap. By introducing a small offset in the dechirper with respect to the reference axis, one might generate transverse wakefields and use the dechirper as a deflector. Understanding the interactions between electron beams of various longitudinal shapes with the wakefields generated by the dechirper is important to assess the feasibility of the dechirper for use as a deflector. Recently, using a set of alpha-BBO crystals, shaping of laser pulses and electron bunches on the order of ps is tested at the Injector Test Facility (ITF) of Pohang Accelerator Laboratory (PAL). Furthermore, we have investigated propagation of electron bunches of arbitrary longitudinal shapes through the dechirper. In the numerical simulations, we observed that the arbitrary electron beams were successful deflected except for lethal beam shape problems. Hence, in this work, we study optimization of the dechirper for electron bunches of arbitrary longitudinal shapes, using analytical theory and numerical simulations with the ASTRA and ELEGANT codes.  
slides icon Slides TUOAB01 [1.631 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOAB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)