Author: Rimjaem, S.
Paper Title Page
TUPOW026 Optimization of Electron Beam Properties for Generation of Coherent THz Undulator Radiation at PBP-CMU Linac Laboratory 1803
SUPSS014   use link to see paper's listing under its alternate paper code  
 
  • N. Chaisueb, S. Rimjaem, J. Saisut, C. Thongbai
    Chiang Mai University, Chiang Mai, Thailand
 
  Funding: This work has been supported by the CMU Junior Research Fellowship Program, the Department of Physics and Material Science, Chiang Mai University, and the Science Achievement Scholarship of Thailand.
Relativistic femtosecond electron bunches produced from the linear accelerator at the Plasma and Beam (PBP) Physics Research Facility are currently used to generate THz radiation via transition radiation. An upgrade to increase the intensity of the THz radiation by using a coherent undulator radiation method is conducted. Optimizations, measurements and analysis of the electron beam properties, which include current, energy and energy spread as well as electron bunch length, are performed to investigate the capability of electron beam production from the current accelerator system. This is also to estimate the possibility to produce the coherent undulator radiation of the PBP-CMU linac. Expected characteristics of the coherent undulator radiation are studied and reported in this contribution.
The authors would like to acknowledge the financial support to participate this conference by the Department of Physics and Material Science and the Graduate School, Chiang Mai University.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY015 Design of Electron Gun and S-Band Structure for Medical Electron Linear Accelerator 1930
 
  • N. Juntong, R. Chimchang
    SLRI, Nakhon Ratchasima, Thailand
  • S. Rimjaem, C. Saisa-ard
    Chiang Mai University, Chiang Mai, Thailand
 
  Linear accelerator technology has been widely utilized for cancer treatment in hospital. This radiotherapy utilizes an accelerated electron beam to create the x-ray beam. The idea to fabricate the prototype of medical electron linac with low cost for domestic use in Thailand was proposed and the budget has been granted. In the first phase, the electron beam energy of the machine will be 6 MeV or equivalent to x-ray energy of 6 MV. The electron gun is a diode type for the simple and low cost fabrication. The design and simulation study of diode gun will be presented together with an analysis of an electron beam in this gun. The S-Band 6 MeV side-coupled RF cavity has been designed to be the accelerating structure of the machine. The electromagnetic fields of the structure have been studied. The electron behaviour when they traverse this cavity will be studied using a particle tracking code. Progression of the project is also presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY039 Studies on Electron Linear Accelerator System for Polymer Research 1985
SUPSS113   use link to see paper's listing under its alternate paper code  
 
  • E. Kongmon
    IST, Chiang Mai, Thailand
  • N. Kangrang
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
  • S. Rimjaem, J. Saisut, C. Thongbai
    Chiang Mai University, Chiang Mai, Thailand
  • P. Wichaisirimongkol
    Chiang Mai University, Science and Technology Research Institute, Chiang Mai, Thailand
 
  This research focuses on modification of an elec-tron linear accelerator system for irradiation of natural rubber latex and polymeric materials at the Plasma and Beam Physics Research Facility, Chiang Mai Universi-ty, Thailand. This is in order to study the change of material properties due to electron beam irradiation. The main accelerator system consists of a DC thermi-onic electron gun and a short standing-wave linac. This system will be able to produce electron beams with variable energy in the range of 0.5 to 4 MeV. The linac macro pulse frequency is adjustable within the range of 20 to 1000 Hz. The macro pulse duration is 4 μs. The electron pulse current can be varied from 10 to 100 mA. This lead to the electron dose of about 0.44 to 4.4 Gy-m2/min. In this paper, overview of the accelera-tor and the irradiation system is presented. Results of low-level RF measurements of the accelerating struc-ture are also reported and discussed.
This work has been supported by the CMU Junior Research Fellowship Program, the Department of Physics and Material Science, Faculty of science, Chiang Mai University.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY018 Study on Electron Beam Transverse Emittance at the Linac-based THz Laboratory in Thailand 3017
SUPSS060   use link to see paper's listing under its alternate paper code  
 
  • K. Kosaentor
    IST, Chiang Mai, Thailand
  • S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
 
  This research focuses on simulation of transverse emittance of electron beams, which are produced from a thermionic RF-gun at the Plasma and Beam Physics (PBP) Research Facility, Chiang Mai University (CMU). The RF-gun is used to together with an alpha magnet for serving as the electron injector system for the PBP linac-based THz source. The quadrupole scan technique is utilized to measure the transverse beam emittance at the entrance of the alpha magnet. The experimental setup consists of quadrupole magnets with a maximum gradient of 7.01 T/m, a drift tube, and a movable fluorescent screen station. Beam dynamic simulations by using the computer codes PARMELA and ELEGANTare performed to track electrons from the cathode to the experimental station. In this contribution, the emittance values from simulations including the space charge effects will be reported.
This work has been supported by the CMU Junior Research Fellowship Program, Department of Physics and Material Science, Faculty of science, Chiang Mai University.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB052 Studies on Electron Beam Injector System for Linac-based Coherent Thz Source in Thailand 3366
SUPSS051   use link to see paper's listing under its alternate paper code  
 
  • W. Thongpakdi, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
 
  Funding: The Department of Physics and Materials Science, Faculty of Science, Chiang Mai University and the Development and Promotion of Science and Technology Talents Project (DPST).
At the Plasma and Beam Physics Research Facility, Chiang Mai University, a thermionic cathode RF electron gun and alpha magnet are used together as an injector system for a linac-based THz source. Investigate the optimal performance of the injector system, beam dynamic simulations are performed by computer codes PARMELA, ASTRA and ELEGANT. The input 3D field distributions of the RF-gun for PARMELA and ASTRA simulations are obtained from the RF modeling program CST Microwave Studio. The beam transport calculation using the program ELEGANT is performed to study behavior of electrons from the gun exit through the alpha magnet, a travelling wave linac, magnet elements, drift tubes, and related beam diagnostic components. Energy slits inside the alpha magnet vacuum chamber is used to select electrons with desired kinetic energies. The alpha magnet compresses electron bunches with certain bunch length before the beam entering the linac to obtain minimum energy spread and shortest bunch length at the experimental station. Results of electron beam optimization with appropriated conditions for generation of intense coherent THz radiation will be reported and discussed in this contribution.
This work has been supported by the CMU Junior Research Fellowship Program, the Department of Physics and Materials Science, Faculty of Science, Chiang Mai University and DPST.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW051 Design and Construction of Compact Electromagnetic Undulator for THz Radiation Production 4060
 
  • C. Thongbai, N. Chaisueb, S. Rimjaem, J. Saisut, K. Thaijai-un
    Chiang Mai University, Chiang Mai, Thailand
  • N. Kangrang
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
  • P. Wichaisirimongkol
    Chiang Mai University, Science and Technology Research Institute, Chiang Mai, Thailand
 
  Funding: Chiang Mai University Research Fellowship Program
The goal of this research is to design and construct a compact electromagnetic undulator. This insertion device will be installed at the PBP-CMU-LINAC system of Chiang Mai University (CMU), Thailand, to produce THz radiation. The undulator magnet is designed by using 2D POISSON and 3D RADIA computer code to optimize the magnet dimensions. The width of iron pole (W) should be 12 mm. The length of iron pole (L) should be about 80 mm long and the thickness of return yoke (d) should be more than 10 mm. The magnet design, the in-house con-struction of the magnet, and the measurement results will be presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)