Author: Reschke, D.
Paper Title Page
WEPMB007 Error Estimation in Cavity Performance Test for the European XFEL at DESY 2128
 
  • Y. Yamamoto
    KEK, Ibaraki, Japan
  • W.-D. Möller, D. Reschke
    DESY, Hamburg, Germany
 
  The cavity performance tests, that is, vertical test (V.T.) and cryomodule test (C.T.), in the cavity/cryomodule mass production for XFEL have been done since 2012 at DESY, and is still on-going at present. At the comparatively initial stage of the mass production, the error estimation in the cavity performance tests was done for understanding how precisely those measurements are done at AMTF (Accelerator Module Test Facility). There are two parameters for the error estimation in V.T. One is the cable calibration parameter, and the other is the external Q-value, which is related to the power emitted from cavity. The measurement precision in the external Q-value depends on the measurement of coupling coefficient (β) strongly. Therefore, it is essential not to miss the β measurement for the precise measurement in V.T. On the other hand, as for C.T., the change of parameter (Kt), which is related to the evaluation of accelerating gradient, was used. As the result of the data analysis for Kt, the error was estimated to be 6%, and is related to the cavity performance degradation from V.T. to C.T. In this paper, the detailed data analysis and error estimation will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYB01 Performance of Superconducting Cavities for the European XFEL 3186
 
  • D. Reschke
    DESY, Hamburg, Germany
 
  The superconducting accelerator of the European XFEL consists of the injector part and the main linac. The injector includes one 1.3 GHz accelerator module and one 3.9 GHz third harmonic module, while the main linac consists of 100 accelerator modules, each housing eight 1.3 GHz TESLA-type cavities, operated at an average design gradient of 23.6 MV/m. The fabrication and surface treatment by industry as well as the vertical and cryomodule RF tests of the required 808 superconducting 1.3GHz cavities are analysed and presented.  
slides icon Slides THYB01 [3.227 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THYB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)