Author: Repond, J.
Paper Title Page
MOPOY058 Removing Known SPS Intensity Limitations for High Luminosity LHC Goals 989
  • E.N. Shaposhnikova, T. Argyropoulos, T. Bohl, P. Cruikshank, B. Goddard, T. Kaltenbacher, A. Lasheen, J. Perez Espinos, J. Repond, B. Salvant, C. Vollinger
    CERN, Geneva, Switzerland
  In preparation of the SPS as an LHC injector its impedance was significantly reduced in 1999 - 2000. A new SPS impedance reduction campaign is planned now for the High Luminosity (HL)-LHC project, which requires bunch intensities twice as high as the nominal one. One of the known intensity limitations is a longitudinal multi-bunch instability with a threshold 3 times below this operational intensity. The instability is presently cured using the 4th harmonic RF system and controlled emittance blow-up, but reaching the HL-LHC parameters cannot be assured without improving the machine impedance. Recently the impedance sources responsible for this instability were identified and implementation of their shielding and damping is foreseen during the next long shutdown (2019 - 2020) in synergy with two other important upgrades: amorphous carbon coating of (part of) the vacuum chamber against the e-cloud effect and rearrangement of the 200 MHz RF system. In this paper the strategy of impedance reduction is presented together with beam intensity achievable after its realisation. The potential effect of other proposals on remaining limitations is also considered.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPOR008 Effect of the Various Impedances on Longitudinal Beam Stability in the CERN SPS 1666
  • A. Lasheen, T. Argyropoulos, J. Repond, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
  The High Luminosity (HL)-LHC project at CERN aims at a luminosity increase by a factor ten and one of the necessary ingredients is doubling the bunch intensity to 2.4x1011 ppb for beams with 25 ns bunch spacing. Many improvements are already foreseen in the frame of the LHC Injector Upgrade (LIU) project, but probably this intensity would still not be reachable in the SPS due to longitudinal instabilities. Recently a lot of effort went into finding the impedance sources of the instabilities. Particle simulations based on the latest SPS impedance model are now able to reproduce the measured instability thresholds and were used to determine the most critical impedance sources by removing them one by one from the model. It was found that impedance of vacuum flanges and of the already damped 630 MHz HOM of the main RF system gave for 72 bunches the comparable intensity thresholds. Possible intensity gains are defined for realistic impedance modifications and for various beam configurations (number of bunches, longitudinal emittances) and RF programs (single and double RF). The results of this study are used as a guideline for planning of a new campaign of the SPS impedance reduction.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)