Author: Qiu, M.T.
Paper Title Page
MOPMB038 Development of Shoebox BPM for Xi‘an Proton Application Facility 175
 
  • W. Wang, X. Guan, W.-H. Huang, X.W. Wang, Z. Yang, H.Y. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • M.T. Qiu, Z.M. Wang
    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Shannxi, People's Republic of China
 
  In this paper, development of the Shoebox BPM is presented which can be applied for the measurement of turn-by-turn position data, closed orbit and tune of Xi'an Proton Application Facility (XiPAF). The preliminary design of the physical dimensions including the electrode aperture, the pipe aperture and the gap between the two electrodes is performed by calculating their effects on BPM response respectively with the equivalent circuit model. Furthermore, the mechanical structure of the Shoebox BPM is optimized by CST simulation to achieve better performance. The dependency of the BPM sensitivity and zero offset on the frequency is diminished by adding one isolating ring, which decreases coupling capacitance of electrodes and compensates ground capacitance difference of the two electrodes. Finally one prototype of the Shoebox BPM has been fabricated and tested offline. Results show that relative position measurement error due to frequency dependency of sensitivity is less than 1% and absolute measurement error due to frequency dependency of zero offset is expected to be less than 0.1 mm.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB009 Vibrating Wire Measurements for the XiPAF Permanent Magnet Quadrupoles 1124
SUPSS102   use link to see paper's listing under its alternate paper code  
 
  • B.C. Wang, M.T. Qiu, Z.M. Wang
    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Shannxi, People's Republic of China
  • C.T. Du, X.W. Wang, L. Wu, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People's Republic of China
 
  Vibrating wire technique is a promising measure-ment method for small-aperture Permanent Magnet Quadrupoles (PMQs) in linear accelerators and scan-ning nuclear microprobes. In this paper, we describe the improved vibrating wire setup for measuring an individual PMQ with the minimum aperture of several millimeters. This setup is aiming at measuring the magnetic center. The advantage of this setup is that any mechanical measurement on the wire, which may be the main error source, is avoided. Experiments of the 20 mm-aperture Halbach-type PMQs for Xi'an Proton Application Facility (XiPAF) DTL has been carried out. The research results of the magnetic center measurements show a precision of about 10 μm and robustness against the background magnetic field. Results of the magnetic center and field multipoles measurements agree with the ones obtained from the rotating coil.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)