Author: Pojer, M.
Paper Title Page
TUPMW002 LHC Luminosity Modeling for RUNII 1403
 
  • F. Antoniou, G. Arduini, M. Hostettler, M. Lamont, S. Papadopoulou, Y. Papaphilippou, G. Papotti, M. Pojer, B. Salvachua, M. Wyszynski
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the High Luminosity LHC project
After a long shut-down (LS1), LHC restarted its operation on April 2015 at a record energy of 6.5TeV, achieving soon a good luminosity performance. In this paper, a luminosity model based on the three main components of the LHC luminosity degradation (intrabeam scattering, synchrotron radiation and luminosity burn-off), is compared with data from runII. Based on the observations, other sources of luminosity degradation are discussed and the model is refined. Finally, based on the experience from runI and runII, the model is used for integrated luminosity projections for the HL-LHC beam parameters.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW007 Impact of Long Range Beam-Beam Effects on Intensity and Luminosity Lifetimes from the 2015 LHC Run 1422
 
  • M.P. Crouch, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • D. Banfi, C. Tambasco
    EPFL, Lausanne, Switzerland
  • J. Barranco, R. Bruce, X. Buffat, T. Pieloni, M. Pojer, B. Salvachua, G. Trad
    CERN, Geneva, Switzerland
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Research supported by the High Luminosity LHC project
Luminosity is one of the key parameters that determines the performance of colliding beams in the Large Hadron Collider (LHC). Luminosity can therefore be used to quantify the impact of beam-beam interactions on the beam lifetimes and emittances. The High Luminosity Large Hadron Collider (HL-LHC) project aims to reach higher luminosities, approximately a factor of 7 larger than the nominal LHC at peak luminosity without crab cavities. Higher luminosities are achieved by increasing the bunch populations and reducing the transverse beam sizes. This results in stronger beam-beam effects. Here the LHC luminosity and beam intensity decay rates are analysed as a function of reducing beam separation with the aim of characterising the impact of beam-beam effects on the luminosity and beam lifetime. The analysis and results are discussed with possible application to the HL-LHC upgrade.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCA01 Operation of the LHC with Protons at High Luminosity and High Energy 2066
 
  • G. Papotti, M. Albert, R. Alemany-Fernandez, G.E. Crockford, K. Fuchsberger, R. Giachino, M. Giovannozzi, G.H. Hemelsoet, W. Höfle, D. Jacquet, M. Lamont, D. Nisbet, L. Normann, M. Pojer, L. Ponce, S. Redaelli, B. Salvachua, M. Solfaroli Camillocci, R. Suykerbuyk, J.A. Uythoven, J. Wenninger
    CERN, Geneva, Switzerland
 
  In 2015 the Large Hadron Collider (LHC) entered the first year in its second long Run, after a 2-year shutdown that prepared it for high energy. The first two months of beam operation were dedicated to setting up the nominal cycle for proton-proton operation at 6.5 TeV/beam, and culminated with the first physics with 3 nominal bunches/ring at 13 TeV CoM on 3 June. The year continued with a stepwise intensity ramp up that allowed reaching 2244 bunches/ring for a peak luminosity of ~5·1033 cm-2s−1 and a total of just above 4 fb-1 delivered to the high luminosity experiments. Beam operation was shaped by the high intensity effects, e.g. electron cloud and macroparticle-induced fast losses (UFOs), which on a few occasions caused the first beam induced quenches at high energy. This paper describes the operational experience with high intensity and high energy at the LHC, together with the issues that had to be tackled along the way.  
slides icon Slides WEOCA01 [4.013 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOCA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY030 First BTF Measurements at the Large Hadron Collider 3051
SUPSS061   use link to see paper's listing under its alternate paper code  
 
  • C. Tambasco, A. Boccardi, X. Buffat, K. Fuchsberger, M. Gąsior, R. Giachino, T. Lefèvre, T.E. Levens, T. Pieloni, M. Pojer, B. Salvachua, M. Solfaroli Camillocci
    CERN, Geneva, Switzerland
  • J. Barranco, C. Tambasco
    EPFL, Lausanne, Switzerland
 
  During the Run I in 2012, several instabilities have been observed at the Large Hadron Collider (LHC) during the Betatron squeeze. The predictions of instability thresholds are based on the computation of the beam Landau damping by calculating the Stability Diagrams (SD). These instabilities could be explained by a deterioration of the SD due to beam-beam resonance excitation which could change the particle distributions. Beam Transfer Functions (BTF) provide a measurement of the Stability Diagram. The BTFs are sensitive to the particle detuning with amplitude as well as to the particle distributions therefore they represent a powerful tool to understand experimentally the stability of beams during the LHC operational cycle. First BTF measurements at the LHC are presented for different machine configurations and settings and compared to predictions.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)