Author: Pisent, A.
Paper Title Page
MOPOY057 The Linear IFMIF Prototype Accelerator (LIPAC) Design Development under the European-Japanese Collaboration 985
 
  • P. Cara, R. Heidinger
    Fusion for Energy, Garching, Germany
  • N. Bazin, S. Chel, R. Gobin, J. Marroncle, B. Renard
    CEA/DSM/IRFU, France
  • B. Brañas Lasala, D. Jiménez-Rey, J. Mollá, P. Méndez, I. Podadera
    CIEMAT, Madrid, Spain
  • A. Facco, E. Fagotti, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • A. Kasugai, S. Keishi, S. O'hira
    JAEA, Aomori, Japan
  • J. Knaster, A. Marqueta, Y. Okumura
    IFMIF/EVEDA, Rokkasho, Japan
  • K. Sakamoto
    QST, Aomori, Japan
 
  The IFMIF aims to provide an accelerator-based, D-Li neutron source to produce high energy neutrons at sufficient intensity. Part of the BA agreement (Japan-EURATOM), the goal of the IFMIF/EVEDA project is to work on the engineering design of IFMIF and to validate the main technological challenges which includes a 125mA CW D+ accelerator up to 9 MeV mainly designed and manufactured in Europe. The components are in an advanced stage of manufacturing. The first components which allow the production of a 140 mA-100 keV deuteron beam have been delivered, installed and under commissioning at Rokkasho. The second phase (100 keV to 5 MeV) will end by March 2017. The third phase (short pulse) and forth phase (cw) will be the integrated commissioning of the LIPAc up to 9 MeV. The duration of the project has been recently extended up to end 2019 to allow the commissioning and operation of the whole accelerator (1MW). The aim of this paper is to give an overview of the LIPAc, currently under commissioning in Japan, to outline the engineering design and the development of the key components, as well as the expected outcomes of the engineering work, associated with the experimental program.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB008 ESS DTL Mechanical Design and Prototyping. 2131
 
  • P. Mereu, M. Mezzano
    INFN-Torino, Torino, Italy
  • D. Castronovo, R. Visintini
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • F. Grespan, A. Pisent, M. Poggi, C. R. Roncolato
    INFN/LNL, Legnaro (PD), Italy
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2 MHz with a duty cycle of 4% (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. In this paper the DTL mechanical design and simulations are presented, together with the results obtained from the prototypes of three drift tubes, equipped respectively with Permanent Magnet Quadrupole, Steerer and Beam Position Monitor.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY033 Intermediate Commissioning Results of the 70 mA/50 keV H+ and 140 mA/100 keV D+ ECR Injector of IFMIF/LIPAC 2625
 
  • B. Bolzon, N. Chauvin, S. Chel, R. Gobin, F. Harrault, F. Senée, M. Valette
    CEA/DSM/IRFU, France
  • J.M. Ayala, J. Knaster, A. Marqueta, K. Nishiyama, Y. Okumura, M. Perez, G. Pruneri, F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
  • P.-Y. Beauvais, H. Dzitko, D. Gex, G. Phillips
    F4E, Germany
  • L. Bellan
    Univ. degli Studi di Padova, Padova, Italy
  • L. Bellan, M. Comunian, E. Fagotti, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P. Cara, R. Heidinger
    Fusion for Energy, Garching, Germany
  • R. Ichimiya, A. Ihara, Y. Ikeda, A. Kasugai, T. Kikuchi, T. Kitano, M. Komata, K. Kondo, S. Maebara, S. O'hira, M. Sugimoto, H. Takahashi, H. Usami
    JAEA, Aomori, Japan
  • K. Sakamoto
    QST, Aomori, Japan
  • K. Shinto
    Japan Atomic Energy Agency (JAEA), International Fusion Energy Research Center (IFERC), Rokkasho, Kamikita, Aomori, Japan
 
  The LIPAc accelerator aims to operate 125 mA/CW deuteron beam at 9 MeV to validate IFMIF's accelerators that will operate in CW 125 mA at 40 MeV. The different subsystems of LIPAc have been designed and constructed mainly by European labs and are being installed and commissioned in Rokkasho Fusion Center. The 2.45 GHz ECR injector developed by CEA-Saclay is designed to deliver 140 mA/100 keV CW D+ beam with 99% gas fraction ratio. Its LEBT presents a dual solenoid focusing system to transport and match the beam into the RFQ. Its commissioning continues in 2016 in parallel with the RFQ installation. The normalized RMS emittance at the RFQ injection cone is to be within 0.25π mm·mrad to allow 96% transmission through the 9.81 m long RFQ. In order to avoid activation during commissioning, an equal perveance H+ beam of half current and half energy as nominal with deuterons is used. In this article, the commissioning results with 110 mA/100 keV D+ beam and 55 mA/50 keV H+ beam are first reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY025 Mechanical Integration of the IFMIF-EVEDA Radio Frequency Quadrupole 3712
 
  • P. Mereu, E.A. Macri, M. Mezzano
    INFN-Torino, Torino, Italy
  • P. Bottin, E. Fagotti, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • D. Gex
    F4E, Germany
 
  The Linear IFMIF Prototype Accelerator, the high intensity deuteron linac compact demonstrator of the IFMIF machine, is in an advanced installation phase at BA site (Rokkasho, Japan), within a European-Japan collaboration coordinated respectively by F4E and JAEA. The RFQ (5 Mev, 130 mA) is an Italian in-kind contribution under the responsibility of INFN. Is it a 9,8 m-long structure made of 18 modules, pre-assembled in three parts. The various aspects of the RFQ integration inside the LIPAc are presented here, with details about the various functional services of the RFQ, the different interfaces with other sub-components of the linac and with the building and the structural validation through the seismic analysis. Some peculiar aspects related to the installation of the RFQ are also detailed (i.e. the handling tooling, precise positioning jigs).  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)