Author: Pipek, J.
Paper Title Page
TUPMY016 Design of a Collection and Selection System for High Energy Laser-driven Ion Beams 1581
 
  • F. Schillaci, L. Allegra, A. Amato, L. Andò, G.A.P. Cirrone, M. Costa, G. Cuttone, G. De Luca, G. Gallo, J. Pipek, F. Romano
    INFN/LNS, Catania, Italy
  • G. Korn, D. Margarone, V. Scuderi
    ELI-BEAMS, Prague, Czech Republic
  • M. Maggiore
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: ELI-Beamlines Contract n.S14-187, LaserGen(CZ.1.07/2.3.00/30.0057), Ministry of Education of Czech Rep.(reg. No.CZ.1.05/1.1.00/02.0061), the FZU, AVCR, v.v.i and the project financed by ESF and Czech Rep.
Laser-target acceleration represents a very promising alternative to conventional accelerators for several potential applications, from the nuclear physics to the medical ones. However, some extreme features, not suitable for multidisciplinary applications, as the wide energy and angular spreads are typical of optically accelerated ion beams. Therefore, beyond the improvements at the laser-target interaction level, a lot of efforts have been recently devoted to the development of specific beam-transport devices in order to obtain controlled and reproducible output beams. In this framework, a three years contract has been signed between INFN-LNS (IT) and Eli-Beamlines-IoP (CZ) to provide the design and the realization of a complete transport beam-line, named ELIMED, dedicated to the transport, diagnostics and dosimetry of laser-driven ion beams. The transport devices will be composed by a set of super-strong permanent magnet quadrupoles able to collect and focus laser driven ions up to 70MeV/u, and a magnetic chicane made of conventional electromagnetic dipole to select particles within a narrow energy range. Here, the design and development of these magnetic systems is described.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB01 Status, Plans and Potential Applications of the ELIMED Beam Line at ELI-Beamlines 2077
 
  • G.A.P. Cirrone, L. Allegra, A. Amato, A. Amico, G. Candiano, A.C. Caruso, L. Cosentino, M. Costa, G. Cuttone, G. De Luca, G. Gallo, S. Gammino, G. Larosa, R. Leanza, R. Manna, V. Marchese, G. Milluzzo, G. Petringa, J. Pipek, P.S. Pulvirenti, F. Romano, S. Salamone, F. Schillaci, V. Scuderi
    INFN/LNS, Catania, Italy
  • G. Korn, D. Margarone, V. Scuderi
    ELI-BEAMS, Prague, Czech Republic
 
  Charged particle acceleration using ultra-intense and ultra-short laser pulses has gathered a strong interest in the scientific community and it is now one of the most attractive topics in the relativistic laser-plasma interaction research. Indeed, it could represent the future of particle acceleration and open new scenarios in multidisciplinary fields, in particular, medical applications. One of the biggest challenges consists of using, in a future perspective, high intensity laser-target interaction to generate high-energy ions for therapeutic purposes, eventually replacing the old paradigm of acceleration, characterized by huge and complex machines. In this framework, INFN-LNS (Italian Institute of Nuclear Physics, Catania (I)) in collaboration with ELI-Beamline Institute (Dolny Brezany, CZ) will realise, within 2017 the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline. ELIMED will be the first Users' addressed transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams.  
slides icon Slides WEXB01 [29.683 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEXB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)