Author: Novokhatski, A.
Paper Title Page
MOPMW040 Electron Beam Excitation of a Surface Wave in mm-Wave Open Accelerating Structures 494
 
  • M. Dal Forno, G.B. Bowden, C.I. Clarke, V.A. Dolgashev, M.J. Hogan, D.J. McCormick, A. Novokhatski, B.D. O'Shea, S.G. Tantawi, S.P. Weathersby
    SLAC, Menlo Park, California, USA
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  Funding: Work supported by the US DOE under contract DE-AC02-76SF00515.
As part of research on the physics of rf breakdowns we performed experiments with high gradient traveling-wave mm-wave accelerating structures. The accelerating structures are open, composed of two identical halves separated by an adjustable gap. The electromagnetic fields are excited by an ultra-relativistic electron beam. We observed that a confined travelling-wave mode exists in half of the accelerating structure. The experiments were conducted at FACET facility at SLAC National Accelerator Laboratory. Depending on the gap width, the accelerating structure had beam-synchronous frequencies that vary from 90 to 140 GHz. When we opened the gap by more than half wavelength the synchronous wave remains trapped. Its behavior is consistent with the so called "surface wave". We characterized this beam-wave interaction by several methods: measurement of the radiated rf energy with the pyro-detector, measurement of the spectrum with an interferometer, measurement of the beam deflection by using the beam position monitors and profile monitor.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW041 Measurements of RF Breakdowns in Beam Driven mm-Wave Accelerating Structures 497
 
  • M. Dal Forno, G.B. Bowden, C.I. Clarke, V.A. Dolgashev, M.J. Hogan, D.J. McCormick, A. Novokhatski, S.G. Tantawi, S.P. Weathersby
    SLAC, Menlo Park, California, USA
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  Funding: Work supported by the US DOE under contract DE-AC02-76SF00515
We studied the physics and properties of rf breakdowns in high gradient traveling-wave accelerating structures at 100 GHz. The structures are open, made of two halves with a gap in between. The rf fields were excited in the structure by an ultra-relativistic electron beam generated by the FACET facility at the SLAC National Accelerator Laboratory. We observed rf breakdowns generated in the presence of GV/m scale electric fields. We varied the rf fields excited by the FACET bunch by moving structure relative to the beam and by changing the gap between structure halves. Reliable breakdowns detectors allowed us to measure the rf breakdown rate at these different rf parameters. We measured radiated rf energy with a pyro-detector. When the beam was off-axis, we observed beam deflection in the beam position monitors and on the screen of a magnetic spectrometer. The measurements of the deflection allowed us to verify our calculation of the accelerating gradient.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW044 Commissioning of the RadiaBeam / SLAC Dechirper 809
 
  • M.W. Guetg, K.L.F. Bane, A. Brachmann, A.S. Fisher, Z. Huang, R.H. Iverson, P. Krejcik, A.A. Lutman, T.J. Maxwell, A. Novokhatski, G. Stupakov, J. Zemella, Z. Zhang
    SLAC, Menlo Park, California, USA
  • M.A. Harrison, M. Ruelas
    RadiaBeam Systems, Santa Monica, California, USA
  • J. Zemella
    DESY, Hamburg, Germany
  • Z. Zhang
    TUB, Beijing, People's Republic of China
 
  We present results on the commissioning of the two-module RadiaBeam / SLAC dechirper system at LCLS. This is the first installation and measurement of a corrugated dechirper at high energy (4.4 - 13.3 GeV), short pulses (< 200 fs) and while observing its effect on an operational FEL. Both the transverse and longitudinal wakefields allow more flexible electron beam tailoring. We verify that, for a single module at a given gap, the strength of the longitudinal wake on axis and the dipole near the axis agree well with the theoretical values. Using direct longitudinal phase space mapping and X-ray FEL spectrum measurements we demonstrate the energy chirp control capabilities.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW046 RadiaBeam/SLAC Dechirper as a Passive Deflector 817
 
  • A. Novokhatski, A. Brachmann, M. Dal Forno, V.A. Dolgashev, A.S. Fisher, M.W. Guetg, Z. Huang, R.H. Iverson, P. Krejcik, A.A. Lutman, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • J. Zemella
    DESY, Hamburg, Germany
 
  Funding: This work was supported by Department of Energy Contract No. DE-AC02-76SF00515.
We discuss the possibility of using the RadiBeam/SLAC dechirper recently installed at LCLS for measuring the bunch length of very short bunches, less than 1 fs perhaps as short as 100 atto second. When a bunch travels close to one of the jaws the particles of the bunch get a transverse kick depends upon the position of a particle in a bunch. The tail particles get more kick. The transverse force also gets a nonlinear dependence on the transverse position. The stretched bunch can be measured at the YAG screen that is 100 m downstream the dechirper. The most important aspect of this measurement is that that no synchronization is needed. The Green's function for the transverse kick was evaluated based on the precise wake field calculations of the dechirper corrugated structure*. Using this function we can restore the longitudinal shape of the bunch. This may also help to see if a bunch has any micro-bunch structure.
* A. Noovokhatski "Wakefield potentials of corrugated structures",Phys. Rev. ST Accel. Beams 18, 104402 (2015)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)