Author: Nicklaus, D.J.
Paper Title Page
MOPMW026 Resonant Control for Fermilab's PXIE RFQ 447
 
  • D.L. Bowring, B.E. Chase, J. Czajkowski, J.P. Edelen, D.J. Nicklaus, J. Steimel, T.J. Zuchnik
    Fermilab, Batavia, Illinois, USA
  • S. Biedron, A.L. Edelen, S.V. Milton
    CSU, Fort Collins, Colorado, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359.
The RFQ for Fermilab's PXIE test program is designed to accelerate a < 10 mA H CW beam to 2.1 MeV. The RFQ has a four-vane design, with four modules brazed together for a total of 4.45 m in length. The RF power required is < 130 kW at 162.5 MHz. A 3 kHz limit on the maximum allowable frequency error is imposed by the RF amplifiers. This frequency constraint must be managed entirely through differential cooling of the RFQ's vanes and outer body and associated material expansion. Simulations indicate that the body and vane coolant temperature should be controlled to within 0.1 degrees C. We present the design of the cooling network and the resonant control algorithm for this structure, as well as results from initial operation.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)