Author: Negishi, K.
Paper Title Page
TUPOW006 Six-dimensional Phase-space Rotation and its Applications 1754
  • M. Kuriki, K. Negishi
    HU/AdSM, Higashi-Hiroshima, Japan
  • H. Hayano, R. Kato, K. Ohmi, M. Satoh, Y. Seimiya, J. Urakawa
    KEK, Ibaraki, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  Funding: This work is partly supported by Grant-in-Aid for Scientific Research by MEXT, Japan (KAKENHI) 25390126.
Recent progress on the accelerator science requires optimized phase space distributions of the beam for each applications. A classical approach to satisfy the requirements is minimizing the beam emittance with a bunch charge as much as possible. This classical approach is not efficient and not compatible to the beam dynamics nature. 6D phase-space rotation, e.g. z-x and x-y, gives a way to optimize the phase space distribution for various applications. In this article, we discus possible applications of the 6D phase space rotation. The x-y rotation generates the high aspect ratio beam for linear colliders directly without DR (Damping Ring). Combination of bunch clipping with a mechanical slit and x-z rotation can generate micro-bunch structure which is applicable for FEL enhancement and drive beam for dielectric acceleration. We present our theoretical and simulation study on these applications.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPOW005 A Study of CsK2Sb Multi-alkali Photocathode by Ultraviolet Photoelectron Spectroscopy at UVSOR 3934
SUPSS022   use link to see paper's listing under its alternate paper code  
  • M. Urano, M. Kuriki, K. Negishi
    HU/AdSM, Higashi-Hiroshima, Japan
  • T. Konomi, Y. Seimiya, N. Yamamoto
    KEK, Ibaraki, Japan
  Photocathode is one of the most important components in the next-generation accelerators, especially based on linear accelerators. Photocathode performance depends not only on electronic state in its bulk material but also on the surface condition. CsK2Sb multi-alkali photocathode is a candidate for the high brightness electron source because of its high quantum efficiency by green laser and its high robustness. We have carried out an UPS (UV Photoelectron Spectroscopy) experiment at UVSOR facility, synchrotron radiation light source in Aichi Japan. We have compared the UPS spectra among several samples, each one has a different quantum efficiency, and try to find physics which decide photocathode's performance. In this case, we focused some characters correlated to the quantum efficiency. I'm going to present a result of this analysis.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPOW006 A Study of Operational Lifetime of CsK2Sb Photo-cathode 3938
  • A. Yokota, R. Kaku, M. Kuriki, K. Negishi, M. Urano
    HU/AdSM, Higashi-Hiroshima, Japan
  • Y. Seimiya
    KEK, Ibaraki, Japan
  A high performance electron beam generated with a laser photo-cathode is one of the most important pieces in the advanced accelerator. Because the CsK2Sb photo-cathode is robust with more than 10 % quantum efficiency (QE) by green laser (532nm), it is considered to be the best candidates of the cathode for Energy Recovery Lin-ac (ERL) and Free Electron Laser (FEL) requiring a high brightness beam. We developed a system to evaporate the cathode as a thin film in vacuum to study the cathode performance. The cathode operational lifetime regarding not only on time, but also extracted charge density was studied. We found the lifetime is long enough for practical use in an accelerator.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)