Author: Nebot Del Busto, E.
Paper Title Page
MOPMR024 A Versatile Beam Loss Monitoring System for CLIC 286
SUPSS070   use link to see paper's listing under its alternate paper code  
  • M. Kastriotou, S. Döbert, W. Farabolini, E.B. Holzer, E. Nebot Del Busto, F. Tecker
    CERN, Geneva, Switzerland
  • M. Kastriotou, E. Nebot Del Busto, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M. Kastriotou, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to quantify the position resolution of optical fibre BLMs in a multi-bunch, multi-loss scenario as well as the sensitivity limitations due to crosstalk and electron field emission.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)