Author: Monig, S.     [Mönig, S.]
Paper Title Page
THPMR038 Non-Linear Errors in the Experimental Insertions of the LHC 3472
 
  • E.H. Maclean, F.S. Carlier, M. Giovannozzi, A. Langner, S. Mönig, T. Persson, P.K. Skowroński, R. Tomás
    CERN, Geneva, Switzerland
 
  Correction of nonlinear magnetic errors in low-β insertions can be of critical significance for the operation of a collider. This is expected to be of particular relevance to LHC Run II and the HL-LHC upgrade, as well as to future colliders such as the FCC. Current correction strategies for these accelerators have assumed it will be possible to calculate optimized local corrections through the insertions using a magnetic model of the errors. To test this assumption the nonlinear errors in the LHC experimental insertions have been examined via feed-down and amplitude detuning. It will be shown that while in some cases the magnetic measurements provide a sufficient description of the errors, in others large discrepancies exist which will require beam-based correction techniques.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR044 Short Term Dynamic Aperture with AC Dipoles 3496
 
  • S. Mönig, J.M. Coello de Portugal, A. Langner, E.H. Maclean, T. Persson, R. Tomás
    CERN, Geneva, Switzerland
 
  The dynamic aperture of an accelerator is determined by its non-linear components and errors. Control of the dynamic aperture is important for a good understanding and operation of the accelerator. The AC dipole, installed in the LHC for the diagnostic of linear and non-linear optics, could serve as a tool for the determination of the dynamic aperture. However, since the AC dipole itself modifies the non-linear dynamics, the dynamic aperture with and without AC dipole are expected to differ. This paper will report the results of studies of the effect of the AC dipole on the dynamic aperture.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)