Author: Mitsuhashi, T.M.
Paper Title Page
MOPMB022 Conceptual Design for SR Monitor in the FCC Beam Emittance (Size) Diagnostic 133
 
  • T.M. Mitsuhashi, K. Oide
    KEK, Ibaraki, Japan
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  A conceptual design for emittance diagnostics through a beam size measurement using the synchrotron radiation (SR) is studied for the FCC. For the FCC-ee, a X-ray interferometer is propose to measure a nano-radian order vertical beam size. Also conceptual design of SR monitor is studied for FCC-hh. In the FCC-hh, visible SR will emitted from bending magnet in the energy range from the injection (3TeV) to top energy (50TeV). Hard X-ray SR will only available in the energy upper than 30TeV. The various instrumentations using the visible SR is usable for all energy range. Around the top energy, the X-ray pinhole camera will convenient for beam diagnostics of emittance through the beam size measurement.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR030 Performance of the Upgraded Synchrotron Radiation Diagnostics at the LHC 306
 
  • G. Trad, E. Bravin, A. Goldblatt, S. Mazzoni, F. Roncarolo
    CERN, Geneva, Switzerland
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
 
  During the LHC long shut down in 2014, the transverse beam size diagnostics based on synchrotron radiation was upgraded in order to cope with the increase of the LHC beam energy to 6.5 TeV. The wavelength used for imaging was shifted to near ultra-violet to reduce the contribution of diffraction to the system resolution, while in parallel, a new diagnostic system based on double slit interferometry was installed to measure the beam size by studying the spatial coherence of the emitted synchrotron radiation. This method has never been implemented before in a proton machine. A Hartmann mask was also installed to identify possible wavefront distortions that could affect the system accuracy. This paper will focus on the comparison of visible and the near ultra-violet imaging and on the first experience with interferometry.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR054 Double-slit Interferometer Measurements at SPEAR3 368
 
  • C.L. Li, W.J. Zhang
    East China University of Science and Technology, Shanghai, People's Republic of China
  • M.J. Boland
    SLSA, Clayton, Australia
  • W.J. Corbett, M. Grinberg
    SLAC, Menlo Park, California, USA
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
  • Y.H. Xu
    DongHua University, Songjiang, People's Republic of China
  • W.J. Zhang
    University of Saskatchewan, Saskatoon, Canada
 
  The resolution of a conventional telescope used to image visible-light synchrotron radiation is often limited by diffraction effects. To improve resolution, the double-slit interferometer method was developed at KEK and has since become popular around the world. Based on the Van Cittert-Zernike theorem relating transverse source profile to transverse spatial coherence, the particle beam size can be inferred by recording fringe contrast as a function of interferometer slit separation. In this paper, we describe the SPEAR3 double-slit interferometer, develop a theoretical framework for the interferometer and provide experimental results. Of note the double-slit system is 'rotated' about the beam axis to map the dependence of photon beam coherence on angle.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW055 Coronagraph Measurements on the Australian Synchrotron Storage Ring Optical Diagnostic Beamline 1895
 
  • M.J. Boland, Y.E. Tan
    SLSA, Clayton, Australia
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
 
  A coronagraph was constructed on the Optical Diagnostic Beamline at the Australian Synchrotron to observe the tails of the stored beam and the injected beam on the first few turns. Some results are presented with special emphasis on the limitation of the dynamic range due to the quality of the synchrotron light extraction mirror.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)