Author: Mazzoni, S.
Paper Title Page
MOPMR030 Performance of the Upgraded Synchrotron Radiation Diagnostics at the LHC 306
 
  • G. Trad, E. Bravin, A. Goldblatt, S. Mazzoni, F. Roncarolo
    CERN, Geneva, Switzerland
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
 
  During the LHC long shut down in 2014, the transverse beam size diagnostics based on synchrotron radiation was upgraded in order to cope with the increase of the LHC beam energy to 6.5 TeV. The wavelength used for imaging was shifted to near ultra-violet to reduce the contribution of diffraction to the system resolution, while in parallel, a new diagnostic system based on double slit interferometry was installed to measure the beam size by studying the spatial coherence of the emitted synchrotron radiation. This method has never been implemented before in a proton machine. A Hartmann mask was also installed to identify possible wavefront distortions that could affect the system accuracy. This paper will focus on the comparison of visible and the near ultra-violet imaging and on the first experience with interferometry.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR045 High Resolution and Dynamic Range Characterisation of Beam Imaging Systems 354
 
  • C.P. Welsch, R.B. Fiorito, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Bergamaschi, R. Kieffer, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • P. Karataev, K.O. Kruchinin
    Royal Holloway, University of London, Surrey, United Kingdom
  • P. Karataev, K.O. Kruchinin
    JAI, Egham, Surrey, United Kingdom
 
  Funding: Work supported by the EU under grant agreement 624890 and the STFC Cockcroft Institute core grant ST/G008248/1.
Any imaging system requires the use of various optical components to transfer the light from the source, e.g. optical radiation generated by a charged particle beam, to the sensor. The impact of the transfer optics on the image resolution is often not well known. To improve this situation, the point spread function (PSF) of the optical system must be measured, preferably, with high dynamic range. For this purpose we have created an intense, small (~ 1 μm) point source using a high quality laser and special focusing optics; and introduced a digital micro-mirror array in the optical system to substantially increase its dynamic range. The PSFs of optical systems that are currently being developed for high resolution, high dynamic range beam imaging using optical transition and diffraction radiation are measured and compared to Zemax simulations. The goal of these studies is to systematically understand and mitigate any ill effects on the PSF due to aberrations, diffraction and misalignment of the components of the imaging system. We present the results of our measurements and simulations.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR052 Commissioning Preparation of the AWAKE Proton Beam Line 1374
 
  • J.S. Schmidt, B. Biskup, C. Bracco, B. Goddard, R. Gorbonosov, M. Gourber-Pace, E. Gschwendtner, L.K. Jensen, O.R. Jones, V. Kain, S. Mazzoni, M. Meddahi
    CERN, Geneva, Switzerland
 
  The AWAKE experiment at CERN will use a proton bunch with an momentum of 400 GeV/c from the SPS to drive large amplitude wakefields in a plasma. This will require a ~830 m long transfer line from the SPS to the experiment. The prepa- rations for the beam commissioning of the AWAKE proton transfer line are presented in this paper. They include the detailed planning of the commissioning steps, controls and beam instrumentation specifications as well as operational tools, which are developed for the steering and monitoring of the beam line. The installation of the transfer line has been finished and first beam is planned in summer 2016.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY024 A Spectrometer for Proton Driven Plasma Accelerated Electrons at AWAKE - Recent Developments 2605
 
  • L.C. Deacon, S. Jolly, F. Keeble, M. Wing
    UCL, London, United Kingdom
  • B. Biskup, A. Goldblatt, S. Mazzoni, A.V. Petrenko
    CERN, Geneva, Switzerland
  • B. Biskup
    Czech Technical University, Prague 6, Czech Republic
  • M. Wing
    DESY, Hamburg, Germany
  • M. Wing
    University of Hamburg, Hamburg, Germany
 
  The AWAKE experiment is to be constructed at the CERN Neutrinos to Gran Sasso facility (CNGS). This will be the first experiment to demonstrate proton-driven plasma wakefield acceleration. The 400 GeV proton beam from the CERN SPS will excite a wakefield in a plasma cell several meters in length. To probe the plasma wakefield, electrons of 10–20 MeV will be injected into the wakefield following the head of the proton beam. Simulations indicate that electrons will be accelerated to GeV energies by the plasma wakefield. The AWAKE spectrometer is intended to measure both the peak energy and energy spread of these accelerated electrons. Results of beam tests of the scintillator screen output are presented, along with tests of the resolution of the proposed optical system. The results are used together with a BDSIM simulation of the spectrometer system to predict the spectrometer performance for a range of possible accelerated electron distributions.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)