Author: Martin, R.
Paper Title Page
TUPMW004 Assessment and Mitigation of the Proton-Proton Collision Debris Impact on the FCC Triplet 1410
 
  • M.I. Besana, F. Cerutti, S.D. Fartoukh, R. Martin, R. Tomás
    CERN, Geneva, Switzerland
  • R. Martin
    Humboldt University Berlin, Berlin, Germany
 
  The Future Circular hadron Collider (FCC-hh), which is designed to operate at a centre-of-mass energy of 100 TeV and to deliver ambitious targets in terms of both instantaneous and integrated luminosity, poses extreme challenges in terms of machine protection during operation and with respect to long-term damages. Energy deposition studies are a crucial ingredient for its design. One of the relevant radiation sources are collision debris particles, which de- posit their energy in the interaction region elements and in particular in the superconducting magnet coils of the final focus triplet quadrupoles, to be protected from the risk of quenching and deterioration. In this contribution, the collision debris will be characterised and expectations obtained with FLUKA will be presented, including magnet lifetime considerations. New techniques including crossing angle gymnastics for peak dose deposition mitigation (as recently introduced in the framework of the LHC operation), will be discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW018 Radiation Load Optimization in the Final Focus System of FCC-hh 1462
SUPSS003   use link to see paper's listing under its alternate paper code  
 
  • R. Martin, M.I. Besana, F. Cerutti, R. Tomás
    CERN, Geneva, Switzerland
 
  With a center-of-mass energy of up to 100 TeV, FCC-hh will produce highly energetic collision debris at the Interaction Point (IP). Protecting the final focus quadrupoles from this radiation is challenging, since the required amount of shielding placed inside the magnets will reduce the free aperture, thereby limiting the β* reach and luminosity. Hence, radiation mitigation strategies that make best use of the available aperture are required. In this paper, we study the possibility to split the first quadrupole Q1 into two quadrupoles with individual apertures, in order to distribute the radiation load more evenly and reduce the peak dose.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW019 First Evaluation of Dynamic Aperture at Injection for FCC-hh 1466
 
  • B. Dalena, D. Boutin, A. Chancé, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, R. Martin, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: This Research and Innovation Action project submitted to call H2020-INFRADEV-1-2014-1 receives funding from the European Union's H2020 Framework Programme under grant agreement no. 654305.
In the hadron machine option, proposed in the context of the Future Circular Colliders (FCC) study, the dipole field quality is expected to play an important role, as in the LHC. A preliminary evaluation of the field quality of dipoles, based on the Nb3Sn technology, has been provided by the magnet group. The effect of these field imperfections on the dynamic aperture, using the present lattice design, is presented and first tolerances on the main multipole components are evaluated.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW020 Status of the Beam Optics of the Future Hadron-Hadron Collider FCC-hh 1470
 
  • A. Chancé
    CEA/DSM/IRFU, France
  • D. Boutin, B. Dalena, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, R. Martin, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: This work was supported by the HORIZON 2020 project EuroCirCol, grant agreement 654305.
Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched a design study for possible future circular collider projects, FCC, to investigate their feasibility for high energy physics research. The study covers three options, a proton-proton collider, a circular e+/e collider and a scenario for e-p collisions to study deep inelastic scattering. The present paper describes the beam optics and the lattice design of the Future Hadron-Hadron Collider (FCC-hh). The status of the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV cm.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB042 Residual Orbit Correction Studies for the FCC-hh 3332
 
  • D. Boutin, B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Chancé, J. Payet
    CEA/DSM/IRFU, France
  • B.J. Holzer, R. Martin, D. Schulte
    CERN, Geneva, Switzerland
 
  The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next genera-tion accelerator in high-energy physics as recommended by the European Strategy Group [*]. Preliminary studies have started to estimate the design parameters of FCC-hh. One of these studies is the calculation of the residual orbit in the arcs of the collider. This is very important for the evaluation of the alignment tolerances of the quadru-poles used in the arcs, the dimensioning of the correctors and of the beam screen. Moreover it has an impact on the dynamic aperture of the ring and the field tolerances of the arc multipoles. To perform the simulations, the beam transport code MADX has been used. Systematic studies of the residual orbit and of the correctors' strength de-pendence on the magnets misalignment or field errors are presented and discussed.
[*] A. Ball et al., EDMS-0134202.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)