Author: Markham, S.R.
Paper Title Page
WEPMR018 Time Resolved Cryogenic Cooling Analysis of the Cornell Injector Cryomodule 2298
 
  • R.G. Eichhorn, A.C. Bartnik, B.M. Dunham, G.M. Ge, G.H. Hoffstaetter, H. Lee, M. Liepe, S.R. Markham, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  To demonstrate key parameters of a an energy recovery linac (ERL) at Cornel, an injector based on a photo gun and an SRF cryomodule was designed and built. The goal was to demonstrate high current generation while achieving low emittances. While the emittance goal has been reached, the current achieved so far is 75 mA. Even though this is a world record, it is still below the targeted 100 mA. While ramping up the current we observed excessive heating in the fundamental power coupler which we were able to track down to insufficient cooling of the 80 K intercepts. These intercepts are cooled by a stream of parallel cryogenic flows which we found to be unbalanced. In this paper we will review the finding, describe the analysis we did, modeling of the parallel flow and the modifications made to the module to overcome the heating.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)