Author: Macpherson, A.
Paper Title Page
WEPMB058 LHC Crab Cavity Coupler Test Boxes 2248
 
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • R. Apsimon, G. Burt, A.R.J. Tutte
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga, A. Macpherson, E. Montesinos
    CERN, Geneva, Switzerland
  • S.D. Silva
    ODU, Norfolk, Virginia, USA
  • B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  The LHC double quarter wave (DQW) crab cavities have two different types of Higher Order Mode (HOM) couplers in addition to a fundamental power coupler (FPC). The FPC requires conditioning, so to achieve this we have designed a radio-frequency (RF) quarter wave resonator to provide high transmission between two opposing FPCs. For the HOM couplers we must ensure that the stop-band filter is positioned at the cavity frequency and that peak transmission occurs at the same frequencies as the strongest HOMs. We have designed two test boxes which preserve the cavity spectral response in order to test the couplers.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY043 Time Scale of Crab Cavity Failures Relevant for High Luminosity LHC 4196
 
  • K.N. Sjobak, R. Bruce, H. Burkhardt, A. Macpherson, A. Santamaría García
    CERN, Geneva, Switzerland
  • R. Kwee-Hinzmann
    Royal Holloway, University of London, Surrey, United Kingdom
  • A. Santamaría García
    EPFL, Lausanne, Switzerland
 
  Funding: Research supported by the High Luminosity LHC project
A good knowledge of the effects of the crab cavities, required for the baseline High Luminosity LHC (HL-LHC), is needed before the results of the first tests of crab cavity prototypes in the SPS, planned for 2018, will be available. In case of crab cavity failures, we have to make sure that time scales are long enough so that the beams can be cleanly dumped before damage by beam loss occurs. We discuss our present knowledge and modeling of crab cavity induced beam losses, combined with mechanical deformation. We discuss lower limits on the time scales required for safe operation, and possible failure mitigation methods.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)