Author: Luo, Q.
Paper Title Page
MOPMB045 Development of FPGA-based Bunch-by-Bunch Beam Current Monitor 193
 
  • Liu, C.S. Liu, Q. Luo, B.G. Sun, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China 11575181, 11375178. And by the Fundamental Research Funds for the Central Universities WK2310000046, WK2310000056
Bunch-by-bunch (BxB) beam current measurement is an important method to study filling pattern of injection and beam instability threshold for multi-bunch operation storage ring, also, necessary equipment for top-up injection. A high-speed high-precision ADC and FPGA are used to construct the bunch-by-bunch beam current measurement system. FPGA reads data from ADC, and transfer the data to PC via USB. A LabVIEW program is running on PC to process the data, and communicates with other accelerator equipment with EPICS by CA Lab. Besides the bunch-by-bunch beam current measurement, the BxB longitudinal tune is measured by the system, and other potential bunch-by-bunch beam diagnostics study could be done in future, like bunch-by-bunch beam life etc., to improve the performance of the storage ring of Hefei light source.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB046 Design and Calculation Error Analysis of a High Order Mode Cavity Bunch Length Monitor 196
 
  • J.G. Guo, Q. Luo, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: National Science Foundation of China (11375178) and Fundamental Research Funds for the Central Universities (WK2310000046).
A two-cavity bunch length monitor for linac of positron source is designed. Fifth harmonic cavity resonates at 14.28 GHz (fifth harmonic of the linac fundamental frequency 2.856 GHz) with mode TM020, as this mode could provide larger cavity radius. Each cavity equipped with a filter to suppress unwanted signal. An improved bunch length calculation method was proposed. A simulation was conducted in CST Particle Studio for beam current from 100-300 mA, bunch length from 5-10 ps. Bunch length was calculated and compared by these two methods
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW026 Status of FELiCHEM, a New IR-FEL in China 774
 
  • H.T. Li, Z.G. He, Q.K. Jia, Q. Luo, L. Wang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  FELiChEM is a new experimental facility under construction at University of Science and Technology of China (USTC), whose core device is a FEL oscillator generating middle-infrared and far-infrared laser and covering the spectral range of 2.5-200 μm. It will be a dedicated light source aiming at energy chemistry research, with the photo excitation, photo dissociation and photo detection experimental stations. We present the brief physical and technical design that delivers the required performance for this device and summarize the status of fabrication. Final assembly is scheduled for early in the next year with first light targeted for July 2017.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW019 Preliminary Concept of Fast Positron Source Based on Photo-injector 1785
 
  • Z. Chu, J.G. Guo, Q. Luo, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by National Natural Science Foundation of China (11375178 and 11575181) and the Fundamental Research Funds for the Central Universities, Grant No WK2310000046
Based on the past experience in slow positron beam, researchers at NSRL/USTC proposed a fast positron source for detection of material deep tiny flaws. Different from conventional positron sources used in positron annihilation techniques, the planned positron source will be a positron production linac, similar to positron injectors used in colliders. To compress the positron pulse, the bombarding electron beam comes from a short bunch photo-injector. A computer simulation was performed using EGS4 and PARMELA code. The bombarding electron bunch is 300pC, with an energy of 30MeV. Simulations results showed that it is reasonable to expect a beam of more than 105 positrons per pulse for future positron annihilation studies. Further work is to be done to achieve precise control of beam energy.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW027 Initial Lattice Design for Hefei Advanced Light Source: A VUV and Soft X-ray Diffraction-limited Storage Ring 2889
 
  • Z.H. Bai, Q.K. Jia, W. Li, G. Liu, C.W. Luo, Q. Luo, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The upgrade project of Hefei Light Source was successfully completed in 2014 and has been operated for synchrotron radiation users since 2015, which is a second generation light source in the range of VUV and soft X-ray at NSRL in China. To meet the future requirements for users, more efforts are now putting at NSRL into the design of Hefei Advanced Light Source (HALS), a new VUV and soft-X ray diffraction-limited storage ring. The HALS storage ring will have an energy of 2 GeV and a natural emittance of about 50 pm·rad. This paper reports the initial lattice design studies, including linear optics design and nonlinear dynamics optimization.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR047 Preliminary Concept and Key Technologies of HIEPA Accelerator 3895
 
  • Z.R. Zhou, Q. Luo, L. Wang, W. Xu, B. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by National Natural Science Foundation of China (11375178 and 11575181) and the Fundamental Research Funds for the Central Universities, Grant No WK2310000046
High energy physicists proposed a new collider: super tau-charm factory. The name of the project is high intensity electron positron accelerator facility. As high intensity electron positron collider, it runs in an energy range of 2-7 GeV. As an advanced light source, it can also provide high quality synchrotron radiation from VUV to soft X-ray. The facility will be a symmetrical two-ring collider located at Hefei. This paper shows preliminary conception of the storage rings.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)