Author: List, I.
Paper Title Page
WEPOY042 Open XAL Status Report 2016 3083
 
  • T.A. Pelaia II, C.K. Allen, A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • D.A. Brown
    NMSU, Las Cruces, New Mexico, USA
  • Y.-C. Chao
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • C.P. Chu, Y. Zhang
    FRIB, East Lansing, Michigan, USA
  • P. Gillette, P. Laurent, E. Lécorché, G. Normand
    GANIL, Caen, France
  • E. Laface, Y.I. Levinsen, M. Muñoz
    ESS, Lund, Sweden
  • Y. Li
    IHEP, Beijing, People's Republic of China
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
Formed in 2010, the Open XAL accelerator physics software platform was developed through an international collaboration among several facilities to establish it as a standard for accelerator physics software. While active development continues, the project has now matured. This paper presents the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY043 Plans for the European Spallation Source Beam Physics Control Software 3086
 
  • Y.I. Levinsen, R. De Prisco, M. Eshraqi, E. Laface, R. Miyamoto, M. Muñoz
    ESS, Lund, Sweden
  • I. List
    Cosylab, Ljubljana, Slovenia
 
  The commissioning and operations planning for the European Spallation Source is currently being defined. It is foreseen that the ESS will begin to deliver beam on target by mid 2019, something which is urging a well structured and thought through plan both for commissioning and operations. In this paper we will discuss the plans for beam physics operational software, priorities and software services needed during the different stages of beam commissioning.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB038 Comparing RF-Cavity Phase-Scan Simulations in the ESS Linac Simulator with Measurements Taken in the Spallation Neutron Source Coupled-Cavity Linac 3317
 
  • E. Laface, Y.I. Levinsen
    ESS, Lund, Sweden
  • I. List
    Cosylab, Ljubljana, Slovenia
  • T.A. Pelaia II
    ORNL, Oak Ridge, Tennessee, USA
 
  The ESS Linac Simulator (ELS) is the model that will be used at the European Spallation Source ERIC in Lund, Sweden, to simulate the transport of the beam envelope for the operations. During the machine restart in August 2015 at the Spallation Neutron Source (SNS) in Oak Ridge, USA, we were able to perform the first benchmarking studies of the ELS. In this paper, we present the results of the phase-scans performed in four RF cavities of the coupled-cavity linac at SNS compared with the same scans simulated in the ELS. The phase of the cavity was modified while the phase of the beam was recorded in two BPMs downstream from the cavity. This measurement was repeated for four independent cavities and the results are compared here with the model, which favourably reproduces the BPM response to the cavity scans.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)