Author: Li, Y.
Paper Title Page
MOPOY029 Transverse Emittance Measurements in CSNS Linac 916
 
  • Z.P. Li, Y. Li, J. Peng, S. Wang
    IHEP, Beijing, People's Republic of China
 
  Commissioning of the front-end of the linac at CSNS has been accomplished. Double scanning slit system and wire-scanners were employed to carry out the transverse emittance measurements in both low energy beam transport (LEBT) and medium energy beam transport (MEBT). Different results of different measurement methods are presented and compared. Corresponding codes were developed for each of the emittance measurement methods.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB008 Beam-Based Alignment for the Transport Line of CSNS 1121
 
  • Y. Li, Y.W. An, Z.P. Li, W.B. Liu, S. Wang
    IHEP, Beijing, People's Republic of China
 
  Beam-based alignment (BBA) techniques are important tools for beam orbit steering in linear accelerators or transfer lines. In this paper this technique and the control system application programs developed based on XAL platform were applied to the beam commissioning for Medium Energy Beam Transport (MEBT) of CSNS to get the transverse misalignments of beam position monitor (BPM) and quad. The results shows that the absolute values of BPMs offsets are less than 0.6 mm and quads offsets are less than 0.05 mm,that is much smaller than the tolerance of the misalignment.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY042 Open XAL Status Report 2016 3083
 
  • T.A. Pelaia II, C.K. Allen, A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • D.A. Brown
    NMSU, Las Cruces, New Mexico, USA
  • Y.-C. Chao
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • C.P. Chu, Y. Zhang
    FRIB, East Lansing, Michigan, USA
  • P. Gillette, P. Laurent, E. Lécorché, G. Normand
    GANIL, Caen, France
  • E. Laface, Y.I. Levinsen, M. Muñoz
    ESS, Lund, Sweden
  • Y. Li
    IHEP, Beijing, People's Republic of China
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
Formed in 2010, the Open XAL accelerator physics software platform was developed through an international collaboration among several facilities to establish it as a standard for accelerator physics software. While active development continues, the project has now matured. This paper presents the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)