Author: Li, W.
Paper Title Page
THPMB022 Direct and High Resolution Beta-Function Measurements for Storage Ring Lattice Characterization 3272
 
  • W. Li, H. Hao, Y.K. Wu
    FEL/Duke University, Durham, North Carolina, USA
  • W. Li, W. Xu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Betatron functions are a set of commonly used merits to characterize the lattice performance of a circular accelerator. The betatron functions in many accelerators can be computed using a lattice model trained or calibrated using a set of closed orbit responses, which is exemplified by the widely used LOCO technique. However, for some accelerators, like Duke storage ring with quad-sextupole combined function magnets, LOCO cannot be employed in any straight forward manner. In this case, direct measurements for betatron function are required. One way to determine betatron functions at the location of quadrupoles for a circular accelerator is to use the relationship between the quadrupole strength variations and the corresponding betatron tune change. In this paper, we present a set of carefully developed techniques to accurately measure the betatron functions at the location of quadrupoles, which allow us to achieve extremely high accuracy. Measurement errors will be discussed, and the detailed measurement technique will be present. Finally, we'll report preliminary experimental results of beta function measurements in the Duke storage ring with statistical error on the order of 1%.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)