Author: Lee, S.G.
Paper Title Page
MOPMB056 Measurements of the Beam Energy and Beam Profile of 100 MeV Proton Linac at KOMAC 217
 
  • S.G. Lee, Y.-S. Cho, H.S. Kim, H.-J. Kwon
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by Ministry of Science, ICT and Future Planning.
The linac for generation of the 100 MeV proton beam is operating in KOMAC. The 100 MeV proton beam is used in the industrial and the scientific fields such as improvement of the material characteristics and production of the isotope. The accurate measurements of the proton beam energy and profile are necessary for increasing the efficiency of the application and minimizing the inadequate radioactivation in linac structure caused by the beam loss. The proton beam energy and beam profile are measured by using the TOF (time-of-flight) method with a BPM (beam position monitor) and the ion chamber array, respectively. The detailed measurement setup and the measured results will be given in this paper.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY040 Design of the 100 MeV Proton Beam Line for Low Flux Application 938
 
  • H.-J. Kwon, Y.-S. Cho, C.R. Kim, H.S. Kim, S.G. Lee, S. Lee, S.P. Yun
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science, ICT & Future Planning of the Korean Government.
KOMAC has been operating two beam lines for user service since 2013. A new beam line was completed in 2015 for radioisotope production and has a plan to be commissioned in 2016. Another beam line was proposed to supply low flux beam to users. The maximum energy and average current are 100 MeV and 10 nA. The beam line consists of collimator, energy degrader, dipole magnet for energy separation and octupole magnet for uniform beam production. In this paper, the design of the beam line and its components is presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)