Author: Lechner, A.
Paper Title Page
MOPOR008 Beam Induced RF Heating in LHC in 2015 602
 
  • B. Salvant, O. Aberle, M. Albert, R. Alemany-Fernandez, G. Arduini, J. Baechler, M.J. Barnes, P. Baudrenghien, O.E. Berrig, N. Biancacci, G. Bregliozzi, J.V. Campelo, F. Carra, F. Caspers, P. Chiggiato, A. Danisi, H.A. Day, M. Deile, D. Druzhkin, J.F. Esteban Müller, S. Jakobsen, J. Kuczerowski, A. Lechner, R. Losito, A. Masi, N. Minafra, E. Métral, A.A. Nosych, A. Perillo Marcone, D. Perini, S. Redaelli, F. Roncarolo, G. Rumolo, E.N. Shaposhnikova, J.A. Uythoven, C. Vollinger, A.J. Välimaa, N. Wang, M. Wendt, J. Wenninger, C. Zannini
    CERN, Geneva, Switzerland
  • M. Bozzo
    INFN Genova, Genova, Italy
  • J.F. Esteban Müller
    EPFL, Lausanne, Switzerland
  • N. Wang
    IHEP, Beijing, People's Republic of China
 
  Following the recurrent beam induced RF issues that perturbed LHC operation during LHC Run 1, a series of actions were put in place to minimize the risk that similar issues would occur in LHC Run 2: longitudinal impedance reduction campaign and/or improvement of cooling for equipment that were problematic or at the limit during Run 1, stringent constraints enforced on new equipment that would be installed in the machine, tests to control the bunch length and longitudinal distribution, additional monitoring of temperature, new monitoring tools and warning chains. This contribution reports the outcome of these actions, both successes as well as shortcomings, and details the lessons learnt for the future runs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR010 Impedance Measurements and Simulations on the TCTP and TDI LHC Collimators 610
 
  • N. Biancacci, F. Caspers, A. Grudiev, J. Kuczerowski, I. Lamas Garcia, A. Lechner, E. Métral, A. Passarelli, A. Perillo Marcone, B. Salvant, J.A. Uythoven
    CERN, Geneva, Switzerland
  • O. Frasciello, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • A. Mostacci
    Rome University La Sapienza, Roma, Italy
  • N. Mounet
    EPFL, Lausanne, Switzerland
 
  The LHC collimation system is a critical element for the safe operation of the LHC machine and is subject to continuous performance monitoring, hardware upgrade and optimization. In this work we will address the impact on impedance of the upgrades performed on the TDI injection protection collimator, where the absorber material has been changed to mitigate the device heating observed in machine operation, and on selected secondary (TCS) and tertiary (TCT) collimators, where beam position monitors (BPM) have been embedded for faster jaw alignment. Concerning the TDI, we will present the RF measurements performed before and after the upgrade, comparing the result to heating and tune shift beam measurements. For the TCTs, we will study how the higher order modes (HOM) introduced by the BPM addition have been cured by means of ferrite placement in the device. The impedance mitigation campaign has been supported by RF measurements whose results are in good agreement with GdfidL and CST simulations. The presence of undamped low frequency modes is proved not to be detrimental to the safe LHC operation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB052 High Intensity Beam Test of Low Z Materials for the Upgrade of SPS-to-LHC Transfer Line Collimators and LHC Injection Absorbers 1218
 
  • F.L. Maciariello, O. Aberle, M.E.J. Butcher, M. Calviani, R. Folch, V. Kain, K. Karagiannis, I. Lamas Garcia, A. Lechner, F.-X. Nuiry, G.E. Steele, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injector Upgrade (LIU) and High-Luminosity LHC (HL-LHC) project, the collimators in the SPS-to LHC transfer lines will undergo important modifications. The changes to these collimators will allow them to cope with beam brightness and intensity levels much increased with respect to their original design parameters: nominal and ultimate LHC. The necessity for replacement of the current materials will need to be confirmed by a test in the High Radiation to Materials (HRM) facility at CERN. This test will involve low Z materials (such as Graphite and 3-D Carbon/Carbon composite), and will recreate the worst case scenario those materials could see when directly impacted by High luminosity LHC (HL-LHC) or Batch Compression Merging and Splitting (BCMS) beams. Thermo-structural simulations used for the material studies and research, the experiment preparation phase, the experiment itself, pre irradiation analysis (including ultrasound and metrology tests on the target materials), the results and their correlation with numerical simulations will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR047 Conceptual Design Considerations for the 50 TeV FCC Beam Dump Insertion 1356
 
  • F. Burkart, M.G. Atanasov, W. Bartmann, B. Goddard, T. Kramer, A. Lechner, A. Sanz Ull, D. Schulte, L.S. Stoel
    CERN, Geneva, Switzerland
  • D. Barna
    University of Tokyo, Tokyo, Japan
 
  Safely extracting and absorbing the 50 TeV proton beams of the FCC-hh collider will be a major challenge. Two extended straight sections (ESS) are dedicated to beam dumping system and collimation. The beam dumping system will fast-extract the beam and transport it to an external absorber, while the collimation system will protect the superconducting accelerator components installed further downstream. The high stored beam energy of about 8.5 GJ per beam means that machine protection considerations will severely constrain the functional design of the ESS and the beam dump line geometry, in addition to dominating the performance specifications of the main sub-systems like kickers and absorber blocks. The general features, including concept choice, optics in the ESS and beam dump line, passive protection devices, layout and integration are described and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW006 Power Deposition in LHC Magnets Due to Bound-Free Pair Production in the Experimental Insertions 1418
 
  • C. Bahamonde Castro, B. Auchmann, M.I. Besana, K. Brodzinski, R. Bruce, F. Cerutti, J.M. Jowett, A. Lechner, T. Mertens, V. Parma, S. Redaelli, M. Schaumann, N.V. Shetty, E. Skordis, G.E. Steele, R. van Weelderen
    CERN, Geneva, Switzerland
 
  The peak luminosity achieved during Pb-Pb collisions in the LHC in 2015 (3x1027cm-2s−1) well exceeded the design luminosity and is anticipated to increase by another factor 2 after the next Long Shutdown (2019- 2020). A significant fraction of the power dissipated in ultra-peripheral Pb-Pb collisions is carried by ions from bound-free pair production, which are lost in the dispersion suppressors adjacent to the experimental insertions. At higher luminosities, these ions risk to quench superconducting magnets and might limit their operation due to the dynamic heat load that needs to be evacuated by the cryogenic system. In this paper, we estimate the power deposition in superconducting coils and the magnet cold mass and we quantify the achievable reduction by deviating losses to less sensitive locations or by installing collimators at strategic positions. The second option is considered for the dispersion suppressor next to the ALICE insertion, where a selective displacement of losses to a magnet-free region is not possible.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW023 Macroparticle-Induced Losses During 6.5 TeV LHC Operation 1481
 
  • G. Papotti, M. Albert, B. Auchmann, E.B. Holzer, M.K. Kalliokoski, A. Lechner
    CERN, Geneva, Switzerland
 
  One of the major performance limitations for operating the LHC at high energy was feared to be the so called UFOs (Unidentified Falling Objects, presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam). Indeed much higher rates were observed in 2015 compared to Run 1, and about 20 fills were prematurely terminated by too high losses caused by such events. Additionally they triggered a few beam induced quenches at high energy, the first in the history of the LHC. In this paper we review the latest update on the analysis of these events, e.g. the conditioning observed during the year and possible correlations with beam and machine parameters. At the same time we also review the optimization of beam loss monitor thresholds in terms of machine protection and availability.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW025 Machine Protection from Fast Crab Cavity Failures in the High Luminosity LHC 1485
SUPSS005   use link to see paper's listing under its alternate paper code  
 
  • A. Santamaría García, R. Bruce, H. Burkhardt, F. Cerutti, R. Kwee-Hinzmann, A. Lechner, K.N. Sjobak, A. Tsinganis
    CERN, Geneva, Switzerland
  • R. Kwee-Hinzmann
    Royal Holloway, University of London, Surrey, United Kingdom
 
  The time constant of a crab cavity (CC) failure can be faster than the reaction time of the active protection system. In such a scenario, the beams cannot be immediately extracted, making the the protection of the machine rely on the passive protection devices. At the same time, the energy stored in the High Luminosity (HL) LHC beams will be doubled with respect to the LHC to more than 700 MJ, which increases the risk of damaging the machine and the experiments in a failure scenario. In this study we estimate the impact that different CC failures have on the collimation system. We also give a first quantitative estimate of the effect of these failures on the elements near the experiments based on FLUKA simulations, using an updated HL-LHC baseline.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW028 Bound-Free Pair Production in LHC Pb-Pb Operation at 6.37 Z TeV per Beam 1497
 
  • J.M. Jowett, B. Auchmann, C. Bahamonde Castro, M.K. Kalliokoski, A. Lechner, T. Mertens, M. Schaumann, C. Xu
    CERN, Geneva, Switzerland
 
  In the 2015 Pb-Pb collision run of the LHC, the power of the secondary beams emitted from the interaction point by the bound-free pair production process reached new levels while the propensity of the bending magnets to quench is higher at the new magnetic field levels. This beam power is about 70 times greater than that contained in the luminosity debris and is focussed on a specific location. As long foreseen, orbit bumps were introduced in the dispersion suppressors around the highest luminosity experiments to mitigate the risk by displacing and spreading out these losses. An experiment designed to induce quenches and determine the quench levels and luminosity limit was carried out to assess the need for special collimators to intercept these secondary beams.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW029 Simulation of Heavy-Ion Beam Losses with the SixTrack-FLUKA Active Coupling 2490
SUPSS008   use link to see paper's listing under its alternate paper code  
 
  • P.D. Hermes, R. Bruce, F. Cerutti, A. Ferrari, J.M. Jowett, A. Lechner, A. Mereghetti, D. Mirarchi, P.G. Ortega, S. Redaelli, B. Salvachua, E. Skordis, G. Valentino, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Funding: Work suppported by the Wolfgang Gentner Programme of the German BMBF
The LHC heavy-ion program aims to further increase the stored ion beam energy, putting high demands on the LHC collimation system. Accurate simulations of the ion collimation efficiency are crucial to validate the feasibility of new proposed configurations and beam parameters. In this paper we present a generalized framework of the SixTrack-FLUKA coupling to simulate the fragmentation of heavy-ions in the collimators and their motion in the LHC lattice. We compare heavy-ion loss maps simulated on the basis of this framework with the loss distributions measured during heavy-ion operation in 2011 and 2015.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW030 Cleaning Performance of the Collimation System of the High Luminosity Large Hadron Collider 2494
 
  • D. Mirarchi, A. Bertarelli, R. Bruce, F. Cerutti, P.D. Hermes, A. Lechner, A. Mereghetti, E. Quaranta, S. Redaelli
    CERN, Geneva, Switzerland
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • H. Garcia Morales, R. Kwee-Hinzmann
    Royal Holloway, University of London, Surrey, United Kingdom
 
  Different upgrades of the LHC will be carried out in the framework of the High Luminosity project (HL-LHC), where the total stored energy in the machine will increase up to about 700 MJ. This unprecedented stored energy poses serious challenges for the collimation system, which was designed to handle safely up to about 360 MJ. In this paper the baseline collimation layout for HL-LHC is described, with main focus on upgrades related to the cleaning of halo and physics debris, and its expected performance is discussed. The main upgrade items include the presence of new collimators in the dispersion suppressor of the betatron cleaning insertion installed between two 11 T dipoles, and two additional collimators for an improved local protection of triplet magnets. Thus, optimized settings for the entire and upgraded collimation chain were conceived and are shown here together with the resulting cleaning performance. Moreover, the cleaning performance taking into account crab cavities it is also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY019 LHC Injection Protection Devices, Thermo-mechanical Studies through the Design Phase 3698
 
  • I. Lamas Garcia, N. Biancacci, G. Bregliozzi, M. Calviani, M.I. Frankl, L. Gentini, S.S. Gilardoni, A. Lechner, A. Perillo-Marcone, B. Salvant, N.V. Shetty, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The TDI is a beam intercepting device installed on the two injection lines of the LHC. Its function is to protect the superconducting machine elements during injection in the case of a malfunction of the injection kickers. The TDIS, which will replace the TDI, is foreseen to be installed for high luminosity operation. Due to the higher bunch intensities and smaller beam emittances expected, and following the operational experiences of the TDI, a complete revision of the design of the jaws must be performed, with a main focus on the material selection. Furthermore, the new TDIS will also improve the TDI reliability by means of a robust design of the jaw positioning mechanism, the efficiency of the cooling circuit and by reducing its impedance. A simplified installation procedure and maintenance will also be an important requirement for the new design. This paper introduces the main characteristics of the TDI as LHC injection protection device, showing the needs and requirements for its upgrade. It also discusses the thermo-mechanical simulations that are supporting and guiding the design phase and the material selection, and describes the modifications to be implemented, so far, for this new device.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR051 Beam Based Measurements to Check Integrity of LHC Dump Protection Elements 3908
 
  • C. Bracco, W. Bartmann, M.A. Fraser, B. Goddard, A. Lechner
    CERN, Geneva, Switzerland
 
  LHC operation is approaching its nominal operating goals and several upgrades are also being prepared to increase the beam intensity and brightness. In case of an asynchronous beam dump at 6.5 - 7 TeV a non-negligible fraction of the stored energy (360 MJ during nominal operation) will be deposited on the protection elements (TCDQ and TCDS) located downstream of the extraction kickers. These elements are designed to protect the machine aperture from the large amplitude particles resulting from the asynchronous dump. A number of checks and measurements with beam have been worked out to verify the integrity of these elements, after a potentially harmful event, without opening the machine vacuum. Details on measurements and simulations performed to evaluate the validity of the proposed method are presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)