Author: Kurimura, S.
Paper Title Page
TUPMY017 Laser Driven Dielectric Accelerator in the Non-relativistic Energy Region 1585
 
  • K. Koyama, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • S. Kurimura
    NIMS, Ibaraki, Japan
  • H. Okamoto, S. Otsuki
    The University of Tokyo, Tokyo, Japan
  • M. Yoshida
    KEK, Ibaraki, Japan
 
  Laser-driven dielectric accelerator (LDA) is suitable for delivering a submicron-size ultra-short electron beam, which is useful for studying basic processes of the radiation effect in a biological cell. Both the oblique incidence and the normal incidence configurations of LDA were studied. The oblique incidence configuration of LDA relaxes the synchronization condition as ve=¥pm c LG/¥left(¥λ+ LG n ¥sin ¥theta ¥right) and is somewhat suitable for accelerating the non-relativistic electrons. The required energy to accelerate electrons in the oblique incidence configuration is smaller than that in the normal incidence configuration by a factor of ¥cos ¥theta, where ¥theta is the incidence angle of the laser beam. Two gratings each were made of different material structure of silica ({¥rm SiO2}) were fabricated by the electron beam lithography. When a crystal silica was adopted, many large humps of several hundred nm size were observed in grooves of the grating. On the other hand, a glass silica had smoother grooves.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)