Author: Krzywinski, J.
Paper Title Page
MOPOW039 An Oscillator Configuration for Full Realization of Hard X-ray Free Electron Laser 801
 
  • K.-J. Kim, T. Kolodziej, R.R. Lindberg, D. Shu, Yu. Shvyd'ko, S. Stoupin
    ANL, Argonne, Ilinois, USA
  • V.D. Blank, S. Terentiev
    TISNCM, Troitsk, Russia
  • Y. Ding, W.M. Fawley, J.B. Hastings, Z. Huang, J. Krzywinski, G. Marcus, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • N.A. Medvedev
    CFEL, Hamburg, Germany
  • W. Qin
    PKU, Beijing, People's Republic of China
  • J. Zemella
    DESY, Hamburg, Germany
 
  Funding: Work at ANL supported under US Department of Energy contract DE-AC02-76SF00515 and at SLAC by the U.S. Department of Energy, Office of Science, under Contract No. DE-ACO2-O6CH11357
An X-ray free electron laser can be built in an oscillator (XFELO) configuration by employing an X-ray cavity with Bragg mirrors such as diamond*. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac. The XFELO will provide stable, coherent, high-spectral-purity hard x-rays. In addition, portions of its output may be enhanced by the LCLS amplifier for stable pulses of ultrashort duration determined by the electron bunch length. Much progress has been made recently on the feasibility of an XFELO: Analytical and numerical methods have been developed to compute the performance of a harmonic XFELO. The energy spread requirement over a sufficient length of the bunch can be met by temporal shaping of the photo-cathode drive laser**. Experiments at the APS have shown that Be-compound refractive lenses are suitable for a low-loss focusing and that the synthetic diamond crystals can withstand the intense x-ray exposure, in accord with estimates based on molecular dynamics considerations***. A strain-free mounting of thin diamond crystal (< 100 microns) can be realized by shaping a thick diamond into a blind alley****.
* R. R. Lindberg et al., PRSTAB 1010701 (2011)
** W. Qin et al., this conference
*** N. Medvedev et al., Phys. Rev. B 88, 224304 (2013)
**** S. Terentyev, private communication
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)