Author: Kitamura, H.
Paper Title Page
TUZB02 Challenge of In-vacuum and Cryogenic Undulator Technologies 1080
  • J.C. Huang, C.-H. Chang, C.H. Chang, T.Y. Chung, C.-S. Hwang, C.K. Yang, Y.T. Yu
    NSRRC, Hsinchu, Taiwan
  • H. Kitamura
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  An in-vacuum undulator (IVU) opens the utilization of high-brilliance X-rays in the medium energy storage rings. The development of a short-period undulator with low phase error becomes important to bring X-ray into a new unprecedented brilliant light source in an ultimate storage ring (USR). NdFeB or PrFeB cryogenic permanent magnet undulators (CPMUs) with a short period have been developed worldwide to obtain high brilliance of undulator radiation. A CPMU has high resistance against beam-induced heat load and allow to operate at a narrow gap. In a low emittance or ultimate storage ring, not only the performance of an undulator but the choice of the lattice functions is very important to obtain high bril-liance of synchrotron radiation. The optimum betatron functions and zero dispersion function shall be given for a straight section at IVU/CPMUs. In this paper, the relevant factors and design issues for IVU/CPMU will be discussed. Many technological challenges of a short-period undulator associated with beam induced-heat load, phase errors, and the deformation of in-vacuum girders will also be presented herein.  
slides icon Slides TUZB02 [5.204 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUZB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)