Author: Kasatov, D.A.
Paper Title Page
TUPMR002 Suppression of Concomitant Flow of Charged Particles in the Tandem Accelerator with Vacuum Insulation 1225
 
  • S.Yu. Taskaev, D.A. Kasatov, A.N. Makarov, Y.M. Ostreinov, I.M. Shchudlo, I.N. Sorokin
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: The study was supported by the Grants from the Russian Science Foundation (Project no. 14-32-00006) and the Budker Institute of Nuclear Physics.
A source of epithermal neutrons based on a tandem accelerator with vacuum insulation for Boron Neutron Capture Therapy of malignant tumors was proposed and constructed. Stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity and 0.5% current stability was obtained*. The flow of charged particles accompanying the accelerated ion beam was detected and measured**. To suppress this concomitant flow cooled diaphragm, cryopump and the electrostatic ring were installed in the input of accelerator. The surface of the vacuum vessel was covered with netting to suppress secondary electron emission. These steps have reduced the flow of charged particles 25 % of the ion beam to 0.5 % and to increase the current proton beam 3 times - up to 4.5 mA. The paper presents the results of research and declares plans to use the accelerator for the BNCT.
* D. Kasatov, et al. JINST 9 (2014) P12016.
** D. Kasatov, et al. Technical Physics Letters 41 (2015) 139-141.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR003 Three-fold Increase of the Proton Beam Current in the Vacuum Insulation Tandem Accelerator 1228
 
  • I.M. Shchudlo, V. Dokutovich, D.A. Kasatov, A.N. Makarov, I.N. Sorokin, S.Yu. Taskaev
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: The study was supported by the Grants from the Russian Science Foundation (Project no. 14-32-00006) and the Budker Institute of Nuclear Physics
In BINP neutron source for boron neutron capture therapy of cancer based on the vacuum insulation tandem accelerator and lithium target for neutron generation was constructed. After optimization of the injection of negative hydrogen ions and modernization of the stripping target 1.6 mA 2 MeV proton beam was obtained. Improvements of the accelerator to suppress accompanying electron current were introduced, and after making changes to protection system of high voltage power supply a stable proton beam with a current of 4.5 mA was obtained. Analysis of the experimental results shows that the beam is accelerated without losses. Obtaining of proton beam with the current of more than 3 mA offers the prospects of using of accelerators for BNCT in cancer clinics.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)