Author: Jiao, F.
Paper Title Page
WEPMB029 Research of Nitrogen Doping at IHEP 2186
 
  • P. Sha
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
  • J.P. Dai
    IHEP, Beijing, People's Republic of China
  • F. Jiao
    PKU, Beijing, People's Republic of China
 
  Funding: Work funded by National Natural Science Foundation of China, Grant No. 11505197
Recently, nitrogen doping (N-doping) technology has been proved to increase Q0 of superconducting cavity obviously, which lowers the BCS surface resistance. After N-doping, Q0 of 9-cell 1.3 GHz cavity can be increased to 3*1010 at Eacc = 16 MV/m, while 1.5*1010 without N-doping [1]. Since 2013, there have been over 60 cavities nitrogen doped at FNAL, JLAB and Cornell. The Circular Electron Collider (CEPC) has been proposed by IHEP in China, while requests Q0=4e10@Eacc=15.5 MV/m for 650 MHz cavity. It's hard to achieve without N-doping. So research of N-doping was begun in cooperation with Peking University in early 2015. Experiments of niobium samples have showed that nitrogen concentration at niobium surface increased a lot after N-doping. After then, several single-cell 1.3 GHz cavities completed vertical tests, but there're no successful test results of Q0 increasing, yet.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)