Author: Hutton, A.
Paper Title Page
WEPMW016 Towards a Small Emittance Design of the JLEIC Electron Collider Ring 2457
 
  • F. Lin, Y.S. Derbenev, A. Hutton, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The electron collider ring of the Jefferson Lab Electron-Ion Collider (JLEIC) is designed to provide an electron beam with a small beam size at the IP for collisions with an ion beam in order to reach a desired high luminosity. For a chosen beta-star at the IP, electron beam size is determined by the equilibrium emittance that can be obtained through a linear optics design. This paper briefly describes the baseline design of the electron collider ring reusing PEP-II components and considering their parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and reports a few approaches to reducing the equilibrium emittance in the electron collider ring.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW019 Study of Beam Synchronization at JLEIC 2463
 
  • V.S. Morozov, Y.S. Derbenev, J. Guo, A. Hutton, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The ion collider ring of Jefferson Lab's Electron-Ion Collider (JLEIC) accommodates a wide range of ion energies, from 20 to 100 GeV for protons or from 8 to 40 GeV per nucleon for lead ions. In this medium energy range, ions are not fully relativistic, which means values of their relativistic beta are slightly below 1, leading to an energy dependence of revolution time of the collider ring. On the other hand, electrons with energy 3 GeV and above are already ultra-relativistic such that their speeds are effectively equal to the speed of light. The difference in speeds of colliding electrons and ions in JLEIC, when translated into a path-length difference necessary to maintain the same timing between electron and ion bunches, is quite large. In this paper, we explore schemes for synchronizing the electron and ion bunches at a collision point as the ion energy is varied.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)