Paper |
Title |
Page |
WEPOW003 |
Design Considerations of a 7BA-6BA Lattice for the Future Upgrade of SOLEIL |
2815 |
|
- R. Nagaoka, P. Brunelle, H.C. Chao, F.J. Cullinan, X.N. Gavaldà, A. Loulergue, A. Nadji, L.S. Nadolski, M.-A. Tordeux
SOLEIL, Gif-sur-Yvette, France
|
|
|
Previous studies indicated that adoption of a combination of 7 and 6BA cells in the existing SOLEIL ring enables reaching the target range of the horizontal emittance below 200 pm·rad as expected, in contrast to fewer dipole solutions such as a combination of 5 and 4BA studied earlier (IPAC 2014). However, the previous 7BA-6BA lattice resulted in having unacceptably strong gradients in quadrupoles and dipoles leading to high natural chromaticities. Several schemes that would allow for an improvement are explored, such as shortening the insertion device straight sections by one or two meters to create more space for the magnetic structure, lowering the dipole fields and the use of anti-bends as proposed by A. Streun. The effectiveness of each scheme is evaluated and the best combined use of them for SOLEIL is investigated. Ways to fulfil the constraints of the existing dipole beam lines are studied by introducing longitudinal gradient bends and/or multipole wigglers. The nonlinear optimisation to maximise the on and off-momentum apertures is made by using genetic algorithm-based numerical codes. A comparison of their performance and the obtained results are presented.
|
|
DOI • |
reference for this paper
※ DOI:10.18429/JACoW-IPAC2016-WEPOW003
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|