Author: Fukuda, S.
Paper Title Page
MOPMY013 Design Study of Collector for CEPC 650 MHz Klystron 540
 
  • S.C. Wang, D.D. Dong, S. Fukuda, G. Pei, O. Xiao, .. Zaib-un-Nisa, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
  • S. Fukuda
    KEK, Ibaraki, Japan
 
  This paper presents the design and simulation of collector for CEPC 650 MHz high-power CW klystron. Power dissipation in collector is optimised by universal beam spread curve using EGUN code, and beam trajectory in collector is verified by Magic code. The thermal analysis is done by ANSYS-CFX, and groove number and water flow rate are optimized by fluid-solid coupled heat transfer simulation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY014 Design Study of RF Section and Cavities for Cepc 650 MHz Klystron 543
 
  • O. Xiao
    Institute of High Energy Physics (IHEP), People's Republic of China
  • D.D. Dong, S. Fukuda, Z.J. Lu, G. Pei, S.C. Wang, .. Zaib-un-Nisa, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
  • S. Fukuda
    KEK, Ibaraki, Japan
 
  An 800 kW CW klystron operating at 650 MHz is de-veloped for CEPC at Institute of High Energy Physics in China. The conceptual design has been finished and the main parameters are presented in this paper. A 1D large signal disk model code, AJDISK, has been used to design and optimize klystron RF section parameters. In addition, the RF cavities have been designed using SUPERFISH, HFSS and CST.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR046 CEPC 650 MHz Klystron Development 3891
 
  • Z.S. Zhou, D. Dong, S. Fukuda, Z.J. Lu, G. Pei, S.C. Wang, O. Xiao, .. Zaib-un-Nisa
    IHEP, Beijing, People's Republic of China
  • S. Fukuda
    KEK, Ibaraki, Japan
 
  The CEPC collider beam power is about 100 MW, so the efficiency of amplifier is very important for cost of project implementation. The high power klystron is the more attractive because of its potential for higher efficiency than solid state amplifier. For CEPC klystron output power is not so high, the operation voltage can be a safe value. Advantage for single beam: reliable, low phase noise, some perspective technology can be used to improve efficiency. The accelerating frequency is 650 MHz, output power is a maximum power of 800kW, and efficiency is about 70%. In this paper, the specifications and developments of 650 MHz CW klystron, including the klystron gun prototype and future high efficiency consideration are summarized.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY015 Design Study of Electron Gun for CEPC 650 MHz Klystron 546
SUPSS097   use link to see paper's listing under its alternate paper code  
 
  • .. Zaib-un-Nisa, D.D. Dong, Z.J. Lu, G. Pei, S.C. Wang, O. Xiao, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
  • S. Fukuda
    KEK, Ibaraki, Japan
 
  This paper presents the design and simulation of an electron gun for 800 kW CW klystron of which frequency is 650 MHz for CEPC project. An electron gun with a modulating anode is designed using DGUN software. The uniform beam trajectories, with a beam perveance of 0.64μA/V 3/2 are simulated. We employed a Ba-dispenser cathode of radius 35 mm with Φ10 hole at the center and obtained a current density on cathode less than 0.45 A/cm2. The beam trajectories were also simulated over whole tube length with a magnetic field of 207 Gauss. Expecting functions using the modulating anode gun are also described. Proposed beam tester and whole CEPC klystron layout are also shown in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW016 Status of Design and Development of Delhi Light Source at IUAC, Delhi 748
 
  • S. Ghosh, R.K. Bhandari, G.K. Chaudhari, V.J. Joshi, D. Kabiraj, D. Kanjilal, B. Karmakar, J. Karmakar, N. Kumar, P. Patra, B.K. Sahu, A.S. Sharma, A.S. Sthuthikkatt Reghu
    IUAC, New Delhi, India
  • A. Aryshev, M.K. Fukuda, S. Fukuda, N. Terunuma, J. Urakawa, J. Urakawa
    KEK, Ibaraki, Japan
  • A. Deshpande
    SAMEER, Mumbai, India
  • V. Naik, A. Roy
    VECC, Kolkata, India
  • T. Rao
    BNL, Upton, Long Island, New York, USA
 
  Funding: The project is supported jointly by Board of Research in Nuclear Sciences (BRNS) and IUAC
The demand for the photon beams for basic research is growing in India. To address the requirements, a project to develop a compact Light Source based on the principle of Free Electron Laser has been initiated at the Inter University Accelerator Centre (IUAC). In the first phase of the project, a normal conducting RF gun will be used to produce electron beam of energy ~ 8 MeV by using copper photocathode and subsequently by Cs2Te photocathode. A high power fiber laser with short pulse length is planned to be used to produce the pre-bunched electron beam by splitting the single laser pulse in to 16 pulses ("comb beam"). The electron beam will be injected in to a compact, variable gap undulator magnet to produce the THz radiation whose frequency can be tuned by varying the undulator field strength and the time separation of the comb beam. In the second and third phases of the project, superconducting RF gun and superconducting accelerating structure will be used to increase the energy of the electron beam up to ~ 40 MeV which will be used to produce IR radiation by using long undulator magnets and to produce X-rays by colliding the electron beam with another high power laser beam.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW036 Recent Developments and Operational Status of the Compact ERL at KEK 1835
 
  • T. Obina, M. Adachi, S. Adachi, T. Akagi, M. Akemoto, D.A. Arakawa, S. Araki, S. Asaoka, M. Egi, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X.J. Jin, E. Kako, Y. Kamiya, H. Katagiri, R. Kato, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondo, T. Konomi, A. Kosuge, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sakanaka, S. Sasaki, K. Satoh, Y. Seimiya, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, O. Tanaka, Y. Tanimoto, N. Terunuma, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, J. Urakawa, K. Watanabe, M. Yamamoto, N. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • R. Hajima, M. Mori, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    QST, Tokai, Japan
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  The Compact Energy Recovery Linac (cERL) at KEK is a test accelerator in order to develop key components to realize remarkable ERL performance as a future light source. After the beam commissioning in December 2013, the legal current limit has been increased step-by-step like 1 uA, 10 uA, and 100 uA. Survey for the source of beam losses has been conducted in each step, and the study on beam dynamics and tuning has also been carried out. As a next step, 1 mA operation is scheduled in February 2016. In parallel to the increase in beam current, a laser Compton scattering (LCS) system which can provide high-flux X-ray to a beamline has been successfully commissioned. We report recent progress in various kinds of beam tuning: improvement of electron gun performance, high bunch charge operation, mitigation of beam losses, LCS optics tuning and bunch compression for THz radiation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY027 Commissioning Status of SuperKEKB Injector Linac 4152
 
  • M. Satoh, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, Y. Enomoto, S. Fukuda, Y. Funakoshi, K. Furukawa, T. Higo, H. Honma, N. Iida, M. Ikeda, H. Iwase, H. Kaji, K. Kakihara, T. Kamitani, H. Katagiri, S. Kazama, M. Kikuchi, H. Koiso, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, Y. Ohnishi, S. Ohsawa, F. Qiu, I. Satake, D. Satoh, Y. Seimiya, T. Shidara, A. Shirakawa, M. Suetake, H. Sugimoto, T. Suwada, M. Tanaka, M. Tawada, Y. Yano, K. Yokoyama, M. Yoshida, R. Zhang, X. Zhou
    KEK, Ibaraki, Japan
 
  The SuperKEKB main ring is currently being constructed for aiming at the peak luminosity of 8 x 1035 cm-2s−1. The electron/positron injector linac upgrade is also going on for increasing the intensity of bunch charge with keeping the small emittance. The key upgrade issues are the construction of positron damping ring, a new positron capture system, and a low emittance photo-cathode rf electron source. The injector linac beam commissioning started in the October of 2013. In this paper, we report the present status and future plan of SuperKEKB injector commissioning.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)