Author: Fukasawa, A.
Paper Title Page
MOPMW038 Measurements of Copper RF Surface Resistance at Cryogenic Temperatures for Applications to X-Band and S-Band Accelerators 487
 
  • A.D. Cahill, A. Fukasawa, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • G.B. Bowden, V.A. Dolgashev, M.A. Franzi, S.G. Tantawi, P.B. Welander, C. Yoneda
    SLAC, Menlo Park, California, USA
  • J. Guo
    JLab, Newport News, Virginia, USA
  • Y. Higashi
    OIST, Onna-son, Okinawa, Japan
 
  Funding: Funding from DOE SCGSR and DOE/SU Contract DE-AC02-76-SF00515
Recent SLAC experiments with cryogenically cooled X-Band standing wave copper accelerating cavities have shown that these structures can operate with accelerating gradients of ~250 MV/m and low breakdown rates. These results prompted us to perform systematic studies of copper rf properties at cryogenic temperatures and low rf power. We placed copper cavities into a cryostat cooled by a pulse tube cryocooler, so cavities could be cooled to 4K. We used different shapes of cavities for the X-Band and S-Band measurements. Properties of the cavities were measured using a network analyzer. We calculated rf surface resistance from measured Q0 and Q external of the cavity at temperatures from 4 K to room temperature. The results were then compared to the theory proposed by Reuter and Sondheimer. These measurements are a part of studies with the goal of reaching very high operational accelerating gradients in normal conducting rf structures.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)