Author: Ferreira Somoza, J.A.
Paper Title Page
TUPMR027 CERN's Fixed Target Primary Ion Programme 1297
 
  • D. Manglunki, M.E. Angoletta, J. Axensalva, G. Bellodi, A. Blas, M.A. Bodendorfer, T. Bohl, S. Cettour-Cave, K. Cornelis, H. Damerau, I. Efthymiopoulos, A. Fabich, J.A. Ferreira Somoza, A. Findlay, P. Freyermuth, S.S. Gilardoni, S. Hancock, E.B. Holzer, S. Jensen, V. Kain, D. Küchler, A.M. Lombardi, A.I. Michet, M. O'Neil, S. Pasinelli, R. Scrivens, R. Steerenberg, G. Tranquille
    CERN, Geneva, Switzerland
 
  The renewed availability of heavy ions at CERN for the needs of the LHC programme has triggered the interest of the fixed-target community. The project, which involves sending several species of primary ions at various energies to the North Area of the Super Proton Synchrotron, has now entered its operational phase. The first argon run, with momenta ranging from 13 AGeV/c to 150 AGeV/c, took place from February 2015 to April 2015. This paper presents the status of the project, the performance achieved thus far and an outlook on future plans.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB051 HIE-ISOLDE: First Commissioning Experience 2230
 
  • W. Venturini Delsolaro, E. Bravin, N. Delruelle, M. Elias, J.A. Ferreira Somoza, M.A. Fraser, J. Gayde, Y. Kadi, G. Kautzmann, F. Klumb, Y. Leclercq, M. Martino, V. Parma, J.A. Rodriguez, S. Sadovich, E. Siesling, D. Smekens, L. Valdarno, D. Valuch, P. Zhang
    CERN, Geneva, Switzerland
 
  The HIE ISOLDE project [1] reached a major milestone in October 2015, with the start of the first physics run with radioactive ion beams. This achievement was the culminating point of intense months during which the first cryomodule of the HIE ISOLDE superconducting Linac and its high-energy beam transfer lines were first installed and subsequently brought into operation. Hardware commissioning campaigns were conducted in order to define the envelope of parameters within which the machine could be operated, to test and validate software and controls, and to investigate the limitations preventing the systems to reach their design performance. Methods and main results of the first commissioning of HIE ISOLDE post accelerator, including the performance of the superconducting cavities with beam, will be reviewed in this contribution.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW030 Studies of Impedance-related Improvements of the SPS Injection Kicker System 3611
 
  • M.J. Barnes, A. Adraktas, M.S. Beck, G. Bregliozzi, H.A. Day, L. Ducimetière, J.A. Ferreira Somoza, B. Goddard, T. Kramer, C. Pasquino, G. Rumolo, B. Salvant, L. Sermeus, J.A. Uythoven, L. Vega Cid, W.J.M. Weterings, C. Zannini
    CERN, Geneva, Switzerland
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  The injection kicker system for the SPS consists of sixteen magnets housed in a total of four vacuum tanks. The kicker magnets in one tank have recently limited operation of the SPS with high-intensity beam: this is due to both beam induced heating in the ferrite yoke of the kicker magnets and abnormally high pressure in the vacuum tank. Furthermore, operation with the higher intensity beams needed in the future for HL-LHC is expected to exacerbate these problems. Hence studies of the longitudinal beam coupling impedance of the kicker magnets have been carried out to investigate effective methods to shield the ferrite yoke from the circulating beam. The shielding must not compromise the field quality or high voltage behaviour of the kicker magnets and should not significantly reduce the beam aperture: results of these studies, together with measurements, are presented. In addition results of tests to identify the causes of abnormal outgassing are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)