Author: Du, C.T.
Paper Title Page
MOPMW014 Design of the 7MeV Linac Injector for the 200MeV Synchrotron of the Xi'an Proton Application Facility 426
 
  • Q.Z. Xing, C. Cheng, C.T. Du, L. Du, T. Du, X. Guan, H. Jiang, C.-X. Tang, R. Tang, D. Wang, X.W. Wang, L. Wu, H.Y. Zhang, Q.Z. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • W.Q. Guan, Y. He, J. Li
    NUCTECH, Beijing, People's Republic of China
  • B.C. Wang, Z.M. Wang, W.L. Yang, Y. Yang, C. Zhao
    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Shannxi, People's Republic of China
 
  We present, in this paper, the design result of the 7 MeV linac which will inject the negative hydrogen ion beam to the downsteam synchrotron of the Xi‘an Proton Application Facility (XiPAF). This newly designed facility will be located in Xi'an city and provide the proton beam with the maximum energy of 230 MeV for the research of the single event effect. The 7 MeV linac injector is composed of the 50 keV negative hydrogen ion source, Low Energy Beam Transport line (LEBT), 3 MeV four-vane-type Radio Frequency Quadrupole (RFQ) accelerator, 7 MeV Alvarez-type Drift Tube Linac (DTL), and the corresponding RF power source system. The output beam of the linac injector is designed with the peak current of 5 mA, maximum repetition frequency of 0.5 Hz, beam pulse width of 10~40 μs and RMS normalized emittance of 0.24 π mm·mard.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB009 Vibrating Wire Measurements for the XiPAF Permanent Magnet Quadrupoles 1124
SUPSS102   use link to see paper's listing under its alternate paper code  
 
  • B.C. Wang, M.T. Qiu, Z.M. Wang
    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Shannxi, People's Republic of China
  • C.T. Du, X.W. Wang, L. Wu, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People's Republic of China
 
  Vibrating wire technique is a promising measure-ment method for small-aperture Permanent Magnet Quadrupoles (PMQs) in linear accelerators and scan-ning nuclear microprobes. In this paper, we describe the improved vibrating wire setup for measuring an individual PMQ with the minimum aperture of several millimeters. This setup is aiming at measuring the magnetic center. The advantage of this setup is that any mechanical measurement on the wire, which may be the main error source, is avoided. Experiments of the 20 mm-aperture Halbach-type PMQs for Xi'an Proton Application Facility (XiPAF) DTL has been carried out. The research results of the magnetic center measurements show a precision of about 10 μm and robustness against the background magnetic field. Results of the magnetic center and field multipoles measurements agree with the ones obtained from the rotating coil.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR042 Transverse Profile Expansion and Homogenization for the Beamline of XIPAF 1346
 
  • Z. Yang, C.T. Du, X. Guan, W. Wang, X.W. Wang, H.J. Yao, S.X. Zheng
    TUB, Beijing, People's Republic of China
 
  For the Xi'an 200 MeV Proton Application Facility (XiPAF), one important thing is to produce more homog-enous beam profile at the target to fulfill the requirements of the beam application. Here the beam line is designed to meet the requirement of beam expansion and homogenization, and the step-like field magnets are employed for the beam spot homogenization. The simulations results including space charge effects and errors show that the beam line can meet the requirements well at the different energies (from 10 MeV to 230 MeV) and different beam spot size (from 20mm to 200mm).  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)