Author: Decker, F.-J.
Paper Title Page
MOPMW043 Overview of High Power Vacuum Dry RF Load Designs 504
 
  • A.K. Krasnykh, A. Brachmann, F.-J. Decker, T.J. Maxwell, J. Sheppard
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by US Department of Energy under contract DE-AC02-76SF00515
A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on 'vacuum dry' or 'all-metal' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW045 Measurement of Advanced Dispersion-based Beam-tilt Correction 813
 
  • M.W. Guetg, F.-J. Decker, Y. Ding, P. Emma, Z. Huang, T.J. Maxwell
    SLAC, Menlo Park, California, USA
 
  Funding: DOE contract \#DE-AC02-76SF00515
Free electron lasers in the X-ray regime require a good slice alignment along the electron bunch to achieve their best performance. A transverse beam slice shift reduces this alignment and spoils projected emittance and optics matching. Coherent synchrotron radiation, specifically for over-compression going through full compression, and transverse wakefields are major contributors to this. In the case of the large-bandwidth operation, with a strong energy chirp on the bunch, this misalignments furthermore reduce the spectral bandwidth of the FEL pulse. Well-defined manipulation of dispersion allows to compensate for this slice centroid shifts, therefore enhancing lasing power and in case of the large bandwidth mode, spectral bandwidth. This work shows the first application of this correction on an X-ray FEL resulting in increase in beam-power and bandwidth.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZA02 Twin-bunch Two-colour FEL at LCLS 1032
 
  • A. Marinelli, R.N. Coffee, F.-J. Decker, Y. Ding, R.C. Field, S. Gilevich, Z. Huang, D. Kharakh, H. Loos, A.A. Lutman, T.J. Maxwell, J.L. Turner, S. Vetter
    SLAC, Menlo Park, California, USA
 
  Twin electron bunches have been the subject of much investigation at the Linac Coherent Light Source, due to their many applications to X-ray free-electron lasers (X-FEL). Twin bunches are trains of two electron bunches that are accelerated and compressed within the same accelerating RF period. At LCLS, these bunches are used in the downstream FEL undulator to generate two X-ray pulses of different energies for pump/probe applications or de novo phase determination of protein crystals. The spectral and temporal shaping of the two bunches requires exquisite control of the compression system to vary the main parameters of the system in a controlled way (peak current, temporal delay and energy separation). I will discuss recent experimental and theoretical results on this subject. In particular I will focus on the demonstration of mJ-level two-color X-ray pulses using twin bunches, as well as the temporal and spectral control of this new mode of operation. Finally, I will discuss our experience with user experiments as well as our future directions of investigation.  
slides icon Slides TUZA02 [5.738 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUZA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)