Author: Cowley, J.
Paper Title Page
MOPOY048 A Novel Approach in the One-Dimensional Phase Retrieval Problem and its Application to the Time Profile Reconstruction 955
  • F. Bakkali Taheri, J. Cowley, G. Doucas, S.M. Hooker, I.V. Konoplev
    JAI, Oxford, United Kingdom
  • R. Bartolini
    DLS, Oxfordshire, United Kingdom
  Funding: This work was supported (in parts) by the UK Science and Technology Facilities Council (STFC UK) grant ST/M003590/1 and The Leverhulme Trust through International Network Grant IN-2015-012
Accurate knowledge of the longitudinal profile of the bunch is important in the context of linear colliders, wake-field accelerators and for the next generation of light sources. As a result the non-destructive, single-shot evaluation of the profile is one of the challenging problems which can be addressed via spectral analysis of coherent radiation generated by a charged particle bunch. To reconstruct the bunch profile from the spectrum the phase retrieval problem has to be solved. Frequently applied methods, e.g. minimal phase retrieval or other iterative algorithms, are reliable if the Blaschke phase contribution is negligible. This is neither known a priori nor can it be assumed to apply to an arbitrary bunch profile. We present a novel approach which gives reproducible, most-probable and stable reconstructions for bunch profiles that would otherwise remain unresolved by the existing techniques. The algorithm proposed uses the output of Kramers-Kronig minimum phase as both initial and boundary conditions, providing a unique solution. To assure a converging solution, new conditions linked to the independently known experimental data such as beam charge were introduced.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)