Author: Chancé, A.
Paper Title Page
TUPMW020 Status of the Beam Optics of the Future Hadron-Hadron Collider FCC-hh 1470
 
  • A. Chancé
    CEA/DSM/IRFU, France
  • D. Boutin, B. Dalena, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, R. Martin, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: This work was supported by the HORIZON 2020 project EuroCirCol, grant agreement 654305.
Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched a design study for possible future circular collider projects, FCC, to investigate their feasibility for high energy physics research. The study covers three options, a proton-proton collider, a circular e+/e collider and a scenario for e-p collisions to study deep inelastic scattering. The present paper describes the beam optics and the lattice design of the Future Hadron-Hadron Collider (FCC-hh). The status of the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV cm.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY004 Development of an Injector and a Magnetic Transfer Line in the Framework of Cilex 2545
 
  • A. Chancé
    CEA/DSM/IRFU, France
  • T. Audet, B. Cros, P. Lee, G. Maynard
    Laboratoire de Physique des Gaz et des Plasmas, Universite Paris-Sud, Orsay, France
  • M. Bougeard, S. Dobosz-Dufrénoy, A. Maitrallain
    CEA, Gif-sur-Yvette, France
  • N. Delerue
    LAL, Orsay, France
  • O. Delferrière, A. Mosnier, J. Schwindling
    CEA/IRFU, Gif-sur-Yvette, France
  • P. Monot
    CEA/DSM, Gif-sur-Yvette, France
  • A. Specka
    LLR, Palaiseau, France
 
  Funding: Investments for the Future program under reference ANR-10-EQPX-25, by the Triangle de la Physique under contract 2011-086TMULTIPLACCELE, 2012-032TELISA, and by the Labex PALM and P2IO.
Laser plasma accelerators (LPAs) have proven their capability to produce accelerating gradients three orders of magnitude higher than RF cavity-based accelerators. The present challenges of LPAs are to achieve the beam quality and stability required by users and to show the feasibility of plasma staging for high-energy applications. As one of the experiments planned at the PetaWatt laser APOLLON facility, currently under construction in France, aims at testing the two-stage scheme, a dedicated plasma injector which will be used as the first stage has been developed and tested at the UHI100 facility at CEA Saclay. The electron source, as well as the beam characterization line, will be presented and the first results will be discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY033 Space Charge Compensation in Low Energy Beam Lines 3055
SUPSS065   use link to see paper's listing under its alternate paper code  
 
  • F. Gérardin, N. Chauvin, D. Uriot
    CEA/IRFU, Gif-sur-Yvette, France
  • M.A. Baylac, D. Bondoux, F. Bouly
    LPSC, Grenoble Cedex, France
  • A. Chancé, O. Napoly, N. Pichoff
    CEA/DSM/IRFU, France
 
  The dynamics of a high intensity beam with low energy is governed by its space-charge forces which may be responsible of emittance growth and halo formation due to their non-linearity. In a low energy beam transport (LEBT) line of a linear accelerator, the propagation of a charged beam with low energy causes the production of secondary particles created by the interaction between the beam and the background gas present in the accelerator tube. This phenomenon called space-charge compensation is difficult to characterize analitically. In order to obtain some quantitative to characterize the space-charge compensation (or neutralization), numerical simulations using a 3D PIC code have been implemented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB042 Residual Orbit Correction Studies for the FCC-hh 3332
 
  • D. Boutin, B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Chancé, J. Payet
    CEA/DSM/IRFU, France
  • B.J. Holzer, R. Martin, D. Schulte
    CERN, Geneva, Switzerland
 
  The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next genera-tion accelerator in high-energy physics as recommended by the European Strategy Group [*]. Preliminary studies have started to estimate the design parameters of FCC-hh. One of these studies is the calculation of the residual orbit in the arcs of the collider. This is very important for the evaluation of the alignment tolerances of the quadru-poles used in the arcs, the dimensioning of the correctors and of the beam screen. Moreover it has an impact on the dynamic aperture of the ring and the field tolerances of the arc multipoles. To perform the simulations, the beam transport code MADX has been used. Systematic studies of the residual orbit and of the correctors' strength de-pendence on the magnets misalignment or field errors are presented and discussed.
[*] A. Ball et al., EDMS-0134202.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW019 First Evaluation of Dynamic Aperture at Injection for FCC-hh 1466
 
  • B. Dalena, D. Boutin, A. Chancé, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, R. Martin, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: This Research and Innovation Action project submitted to call H2020-INFRADEV-1-2014-1 receives funding from the European Union's H2020 Framework Programme under grant agreement no. 654305.
In the hadron machine option, proposed in the context of the Future Circular Colliders (FCC) study, the dipole field quality is expected to play an important role, as in the LHC. A preliminary evaluation of the field quality of dipoles, based on the Nb3Sn technology, has been provided by the magnet group. The effect of these field imperfections on the dynamic aperture, using the present lattice design, is presented and first tolerances on the main multipole components are evaluated.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)