Author: Cerutti, F.
Paper Title Page
TUPMW004 Assessment and Mitigation of the Proton-Proton Collision Debris Impact on the FCC Triplet 1410
 
  • M.I. Besana, F. Cerutti, S.D. Fartoukh, R. Martin, R. Tomás
    CERN, Geneva, Switzerland
  • R. Martin
    Humboldt University Berlin, Berlin, Germany
 
  The Future Circular hadron Collider (FCC-hh), which is designed to operate at a centre-of-mass energy of 100 TeV and to deliver ambitious targets in terms of both instantaneous and integrated luminosity, poses extreme challenges in terms of machine protection during operation and with respect to long-term damages. Energy deposition studies are a crucial ingredient for its design. One of the relevant radiation sources are collision debris particles, which de- posit their energy in the interaction region elements and in particular in the superconducting magnet coils of the final focus triplet quadrupoles, to be protected from the risk of quenching and deterioration. In this contribution, the collision debris will be characterised and expectations obtained with FLUKA will be presented, including magnet lifetime considerations. New techniques including crossing angle gymnastics for peak dose deposition mitigation (as recently introduced in the framework of the LHC operation), will be discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW005 Characterization of the Radiation Field in the FCC-hh Detector 1414
 
  • M.I. Besana, F. Cerutti, A. Ferrari, W. Riegler, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  As part of the post-LHC high-energy program, a study is ongoing to design a new 100 km long hadron collider, which is expected to operate at a centre-of-mass energy of 100 TeV and to accumulate up to 30 ab−1, with a peak instantaneous luminosity that could reach 30 1034cm−2s−1. In this context, the evaluation of the radiation load on the detector is a key step for the choice of materials and technologies. In this contribution, a first detector concept will be presented. At the same time, fluence distributions, relevant for detector occupancy, and accumulated damage on materials and electronics will be shown. The effectiveness of a possible shielding configuration, intended to minimise the background in the muon chambers and tracking stations, will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW006 Power Deposition in LHC Magnets Due to Bound-Free Pair Production in the Experimental Insertions 1418
 
  • C. Bahamonde Castro, B. Auchmann, M.I. Besana, K. Brodzinski, R. Bruce, F. Cerutti, J.M. Jowett, A. Lechner, T. Mertens, V. Parma, S. Redaelli, M. Schaumann, N.V. Shetty, E. Skordis, G.E. Steele, R. van Weelderen
    CERN, Geneva, Switzerland
 
  The peak luminosity achieved during Pb-Pb collisions in the LHC in 2015 (3x1027cm-2s−1) well exceeded the design luminosity and is anticipated to increase by another factor 2 after the next Long Shutdown (2019- 2020). A significant fraction of the power dissipated in ultra-peripheral Pb-Pb collisions is carried by ions from bound-free pair production, which are lost in the dispersion suppressors adjacent to the experimental insertions. At higher luminosities, these ions risk to quench superconducting magnets and might limit their operation due to the dynamic heat load that needs to be evacuated by the cryogenic system. In this paper, we estimate the power deposition in superconducting coils and the magnet cold mass and we quantify the achievable reduction by deviating losses to less sensitive locations or by installing collimators at strategic positions. The second option is considered for the dispersion suppressor next to the ALICE insertion, where a selective displacement of losses to a magnet-free region is not possible.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW018 Radiation Load Optimization in the Final Focus System of FCC-hh 1462
SUPSS003   use link to see paper's listing under its alternate paper code  
 
  • R. Martin, M.I. Besana, F. Cerutti, R. Tomás
    CERN, Geneva, Switzerland
 
  With a center-of-mass energy of up to 100 TeV, FCC-hh will produce highly energetic collision debris at the Interaction Point (IP). Protecting the final focus quadrupoles from this radiation is challenging, since the required amount of shielding placed inside the magnets will reduce the free aperture, thereby limiting the β* reach and luminosity. Hence, radiation mitigation strategies that make best use of the available aperture are required. In this paper, we study the possibility to split the first quadrupole Q1 into two quadrupoles with individual apertures, in order to distribute the radiation load more evenly and reduce the peak dose.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW025 Machine Protection from Fast Crab Cavity Failures in the High Luminosity LHC 1485
SUPSS005   use link to see paper's listing under its alternate paper code  
 
  • A. Santamaría García, R. Bruce, H. Burkhardt, F. Cerutti, R. Kwee-Hinzmann, A. Lechner, K.N. Sjobak, A. Tsinganis
    CERN, Geneva, Switzerland
  • R. Kwee-Hinzmann
    Royal Holloway, University of London, Surrey, United Kingdom
 
  The time constant of a crab cavity (CC) failure can be faster than the reaction time of the active protection system. In such a scenario, the beams cannot be immediately extracted, making the the protection of the machine rely on the passive protection devices. At the same time, the energy stored in the High Luminosity (HL) LHC beams will be doubled with respect to the LHC to more than 700 MJ, which increases the risk of damaging the machine and the experiments in a failure scenario. In this study we estimate the impact that different CC failures have on the collimation system. We also give a first quantitative estimate of the effect of these failures on the elements near the experiments based on FLUKA simulations, using an updated HL-LHC baseline.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW029 Simulation of Heavy-Ion Beam Losses with the SixTrack-FLUKA Active Coupling 2490
SUPSS008   use link to see paper's listing under its alternate paper code  
 
  • P.D. Hermes, R. Bruce, F. Cerutti, A. Ferrari, J.M. Jowett, A. Lechner, A. Mereghetti, D. Mirarchi, P.G. Ortega, S. Redaelli, B. Salvachua, E. Skordis, G. Valentino, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Funding: Work suppported by the Wolfgang Gentner Programme of the German BMBF
The LHC heavy-ion program aims to further increase the stored ion beam energy, putting high demands on the LHC collimation system. Accurate simulations of the ion collimation efficiency are crucial to validate the feasibility of new proposed configurations and beam parameters. In this paper we present a generalized framework of the SixTrack-FLUKA coupling to simulate the fragmentation of heavy-ions in the collimators and their motion in the LHC lattice. We compare heavy-ion loss maps simulated on the basis of this framework with the loss distributions measured during heavy-ion operation in 2011 and 2015.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW030 Cleaning Performance of the Collimation System of the High Luminosity Large Hadron Collider 2494
 
  • D. Mirarchi, A. Bertarelli, R. Bruce, F. Cerutti, P.D. Hermes, A. Lechner, A. Mereghetti, E. Quaranta, S. Redaelli
    CERN, Geneva, Switzerland
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • H. Garcia Morales, R. Kwee-Hinzmann
    Royal Holloway, University of London, Surrey, United Kingdom
 
  Different upgrades of the LHC will be carried out in the framework of the High Luminosity project (HL-LHC), where the total stored energy in the machine will increase up to about 700 MJ. This unprecedented stored energy poses serious challenges for the collimation system, which was designed to handle safely up to about 360 MJ. In this paper the baseline collimation layout for HL-LHC is described, with main focus on upgrades related to the cleaning of halo and physics debris, and its expected performance is discussed. The main upgrade items include the presence of new collimators in the dispersion suppressor of the betatron cleaning insertion installed between two 11 T dipoles, and two additional collimators for an improved local protection of triplet magnets. Thus, optimized settings for the entire and upgraded collimation chain were conceived and are shown here together with the resulting cleaning performance. Moreover, the cleaning performance taking into account crab cavities it is also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)