Author: Catalan-Lasheras, N.     [Catalán Lasheras, N.]
Paper Title Page
MOOCB01 PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components 58
  • H. Mainaud Durand, K. Artoos, M.C.L. Buzio, D. Caiazza, N. Catalán Lasheras, A. Cherif, I.P. Doytchinov, J.-F. Fuchs, A. Gaddi, N. Galindo Munoz, J. Gayde, S.W. Kamugasa, M. Modena, P. Novotny, S. Russenschuck, C. Sanz, G. Severino, D. Tshilumba, V. Vlachakis, M. Wendt, S. Zorzetti
    CERN, Geneva, Switzerland
  The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper presents the technical systems to be integrated in the test bench, the results of the compatibility tests performed between these systems, as well as the final design of the PACMAN validation bench.  
slides icon Slides MOOCB01 [9.553 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOOCB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPOR016 Pre-alignment of Accelerating Structures for Compact Acceleration and High Gradient using In-situ Radiofrequency Methods 2696
SUPSS078   use link to see paper's listing under its alternate paper code  
  • N. Galindo Munoz, N. Catalán Lasheras, A. Grudiev
    CERN, Geneva, Switzerland
  • V.E. Boria
    DCOM-iTEAM-UPV, Valencia, Spain
  • A. Faus-Golfe
    IFIC, Valencia, Spain
  Funding: PACMAN is founded under the European Union's 7th Framework Program Marie Curie Actions, grant PITN-GA-2013-606839
To achieve a high accelerating gradient of 100 MV/m, the CLIC project under study at CERN uses a 23 cm long tapered normal-conducting travelling wave Accelerating Structure (AS) operating at 12 GHz. Minimisation of the long-range wakefields (WF) is assured by damping of the HOM through four radial waveguides in each cell without distorting the accelerating mode. As an extension of them, there are four bent waveguides called WF monitors (WFM) in the middle cell with two RF pick-ups. To obtain a small beam emittance in the collision point, micro-metric pre-alignment of the AS is required. We work to find the electrical centre of the AS through the use of the asymmetry in the RF scattering parameters created by an off-centre conductive wire, stretched along the axis. The accuracy required is of 7 μm with a resolution of 3.5 μm for the WFM signals including the acquisition electronics. Our simulations have shown that a resolution of 1 μm is possible using a calibrated VNA. Measurement results and improvements of the final accuracy will be presented and discussed.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPOR031 Beam-Loading Effect on Breakdown Rate in High-Gradient Accelerating Structures 3848
  • F. Tecker, T. Argyropoulos, N. Catalán Lasheras, R. Corsini, A. Degiovanni, D. Gamba, J. Giner Navarro, A. Grudiev, G. McMonagle, J.L. Navarro Quirante, R. Rajamaki, E. Senes, I. Syratchev, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • T. Argyropoulos, J. Giner Navarro
    IFIC, Valencia, Spain
  • A. Degiovanni, J.L. Navarro Quirante
    ADAM, Geneva, Switzerland
  • D. Gamba
    JAI, Oxford, United Kingdom
  • R. Rajamaki
    Aalto University, School of Science and Technology, Aalto, Finland
  • E. Senes
    Torino University, Torino, Italy
  • J. Tagg
    National Instruments Switzerland, Ennetbaden, Switzerland
  The Compact Linear Collider (CLIC) study for a future electron-positron collider with a center-of-mass energy up to 3 TeV aims for an accelerating gradient of 100 MV/m. The gradient is limited by RF breakdowns, and the luminosity requirements impose a limit on the admissible RF breakdown rate. RF testing of 12 GHz structure prototypes has shown that gradients in excess of 100 MV/m can be reached with the required breakdown rate. However at CLIC, the structures will be operated with significant beam-loading, modifying the field distribution inside. The effect of the beam-loading must be well understood but has not been previously measured. The commissioning and operation of an experiment to measure the effect of beam-loading on breakdown rate and the measurement results are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)