Paper | Title | Page |
---|---|---|
TUPOR001 | Lifetime Improvements with a Harmonic RF System for the ESRF EBS | 1644 |
|
||
A third-harmonic RF system to increase the Touschek lifetime is under study for the European Synchrotron Radiation Facility (ESRF) Extremely Brilliant Source (EBS) storage ring, in particular for modes with high current per bunch. Multi-particle simulations have been done to study the bunch lengthening and shape in presence of inductive impedance and a third-harmonic RF system. | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR001 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOW005 | Updates on Lattice Modeling and Tuning for the ESRF-EBS Lattice. | 2818 |
|
||
The ESRF-EBS lattice model is updated to include the effect of magnetic lengths in dipoles, quadrupoles, sextupoles and combined function magnets. The effect of this modification and the updates to the injection cell are considered with particular focus on injection efficiency and Touschek lifetime. The solutions to introduce new sources of radiation suitable for the existing bending magnet radiation beamlines are also presented. | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW005 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOW044 | Study of a Double Triple Bend Achromat (DTBA) Lattice for a 3 GeV Light Source | 2940 |
|
||
Starting from the concepts of the Hybrid Multi Bend Achromat (HMBA) lattice developed at ESRF and of the Double-Double Bend Achromat (DDBA) lattice developed at Diamond, we present a new cell that includes all the advantages of the two designs. The resulting Double Triple Bend Achromat (DTBA) cell allows for a natural horizontal emittance of less than 100 pm with a large dynamic aperture and lifetime. It includes two straight sections, for insertion devices, five and three meters long. The lattice is consistent with the engineering design developed for the ESRF-EBS lattice and the layout and user requirements of Diamond. The characteristics of the cell are presented together with the results of the optimisation process. | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW044 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOY040 | Lattice Translation Between Accelerator Simulation Codes for Superkekb | 3077 |
|
||
To improve collaborative studies on beam dynamics for SuperKEKB between several labs, efforts have been made to translate the SAD lattices of SuperKEKB rings to the versions for other codes: AT, Bmad, MAD-X, and PTC. It turns out that lattice translations between these codes are not straightforward because of the complexity of the SuperKEKB lattices. In this paper, we describe our experiences of lattice translations, and present some results of benchmarks for the case of SuperKEKB. | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY040 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMR015 | RCDS Optimizations for the ESRF Storage Ring | 3420 |
|
||
The Robust Conjugate Direction Search (RCDS)* optimizer is applied for online optimizations of the ESRF accelerators. This paper presents the successful application of the algorithm in reducing vertical emittance, improving injection efficiency and increasing lifetime. A new set of sextupole settings to increase chromaticity has been obtained with lifetimes comparable to the existing one. This allows to run with double current in a single bunch, and unifies the optics for few bunch (except 4x10 bunches) and multi-bunch modes.
* X. Huang, J. Corbett, J. Safranek, J. Wu, "An algorithm for online optimization of accelerators", Nucl. Instr. Methods, A 726 (2013) 77-83. |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOR007 | Optics Measurements and Corrections at the Early Commissioning of SuperKEKB | 3782 |
|
||
We present experimental results of measurements and corrections of the optics at the early Phase-1 commissioning of SuperKEKB which is a positron-electron collider built to achieve the target luminosity of 8x1035 cm-2s-1. We have three stages; the Phase-1 is the commissioning of the machine without the final focus magnets and detector solenoid(no collision); the collision with the final focus system and the Belle II detector will be performed at the Phase-2 and Phase-3. The strategy for the luminosity upgrade is a novel "nano-beam'' scheme found elsewhere*. In order to achieve the target luminosity, the vertical emittance has to be reduced by corrections of machine error measured by orbit responses. The vertical emittance should be achieved to be less than 6 pm(0.2 % coupling) during the Phase-1 by fully utilizing correction tools of skew quadrupole-like coils wound on sextupole magnets and power supplies for each correction coil in quadrupole magnets. In addition to the linear optics, the optics for off-momentum particles is also studied to understand a dynamic aperture affects the Touschek lifetime.
* "SuperB Conceptual Design Report", INFN/AE-07/2, SLAV-R-856, LAL 07-15, (2007). |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR007 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |