Author: Campmany, J.
Paper Title Page
TUPMB018 Magnetic Measurements of SESAME Storage Ring Dipoles at ALBA 1148
 
  • J. Marcos, J. Campmany, V. Massana
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • A. Milanese, C. Petrone, L. Walckiers
    CERN, Geneva, Switzerland
 
  Funding: This work is partially supported by the EC under the CESSAMag project, FP7 contract 338602.
In this work we present the results of the measurement campaign of the main bending magnets of the SESAME storage ring, that were fully characterized at ALBA-CELLS magnetic measurements facility. A total of 17 combined function dipoles ' 16 series magnets plus a pre-series one ' has been tested and characterized. This campaign has been performed using a dedicated Hall probe bench. The main measurements include the transfer function at the center of the magnet and field maps of the three components of the field in a plane around the nominal trajectory of the electron beam, at two different operating currents. In this paper we describe the experimental setup and procedures, before reporting the main results, including statistics of magnet-to-magnet reproducibility and integrated field quality. Finally, we show how the measured data can be exploited for an optimal 3D alignment of the dipoles in the machine.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB019 Detailed Characterization of MEBT Quadrupoles for the Linear IFMIF Prototype Accelerator (LIPAc) 1151
 
  • J. Marcos, J. Campmany, V. Massana
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J. Castellanos
    UNED, Madrid, Spain
  • J. Castellanos, C. Oliver, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • O. Nomen
    IREC, Sant Adria del Besos, Spain
 
  Funding: This work has been funded by the Spanish Ministry of Economy and Competitiveness under the Agreement as published in BOE, 16/01/2013, page 1988
The IFMIF-EVEDA* Linear IFMIF Prototype Accelerator (LIPac) is a 9 MeV, 125 mA CW deuteron accelerator to validate the technology to be used in the future IFMIF accelerator. The acceleration of deuterons will be done through two stages. The matching between them will be done in the Medium Energy Beam Transport line (MEBT). In this section, the transverse focusing of the beam is carried out by five quadrupole magnets with integrated steerers, grouped in one triplet and one doublet**. These magnets have been designed by CIEMAT, and manufactured by the Spanish company ANTECSA. After manufacturing, they were fully characterized at ALBA-CELLS magnetic measurements facility. In this paper we describe the characterization bench used to measure the magnets, the measurement protocol and the alignment procedure, as well as the results obtained and the iteration process followed in order to shim the magnets to fulfill with beam dynamics requirements.
* A. Mosnier et al., proceedings of IPAC10, MOPEC056, p.588, Kyoto, Japan (2010)
** C. Oliver, et alt, proceedings of IPAC11, WEPO014, p. 2424, San Sebastián, Spain (2011)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR035 Low Horizontal Beta Optics for ALBA 3461
 
  • G. Benedetti, J. Campmany, Z. Martí
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA insertion device beamlines have a horizontal and vertical rms source size of 130 and 5.5 microns. Protein crystallography beamlines (Xaloc) would benefit from a reduction of the horizontal and increase of the vertical beam size, to gain spatial resolution and avoid anisotropy effects. A modified lattice with horizontal and vertical beam size of 74 and 9 microns has been setup and tested, breaking the ring symmetry, with different setting of the six neightbouring quadrupoles at each side of the Xaloc insertion device. Such configuration keeps the nominal emittance almost unvaried and the working point is recovered by small changes in the quadrupole strengths of the four symmetric matching sections. A dedicated setting of the nine available sextupole families has been obtained by numerical optimization of the dynamical apertures and tune shifts. The lattice settings have been satisfactorily tested. The measured lifetime is reduced a factor two and the injection efficiency decreases to 60%. Finally, the option of increasing the number of sextupole families, to recover the dynamic aperture and guarantee the injection efficiency, has been studied.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)