Author: Calviani, M.
Paper Title Page
TUPMB052 High Intensity Beam Test of Low Z Materials for the Upgrade of SPS-to-LHC Transfer Line Collimators and LHC Injection Absorbers 1218
 
  • F.L. Maciariello, O. Aberle, M.E.J. Butcher, M. Calviani, R. Folch, V. Kain, K. Karagiannis, I. Lamas Garcia, A. Lechner, F.-X. Nuiry, G.E. Steele, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injector Upgrade (LIU) and High-Luminosity LHC (HL-LHC) project, the collimators in the SPS-to LHC transfer lines will undergo important modifications. The changes to these collimators will allow them to cope with beam brightness and intensity levels much increased with respect to their original design parameters: nominal and ultimate LHC. The necessity for replacement of the current materials will need to be confirmed by a test in the High Radiation to Materials (HRM) facility at CERN. This test will involve low Z materials (such as Graphite and 3-D Carbon/Carbon composite), and will recreate the worst case scenario those materials could see when directly impacted by High luminosity LHC (HL-LHC) or Batch Compression Merging and Splitting (BCMS) beams. Thermo-structural simulations used for the material studies and research, the experiment preparation phase, the experiment itself, pre irradiation analysis (including ultrasound and metrology tests on the target materials), the results and their correlation with numerical simulations will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY019 LHC Injection Protection Devices, Thermo-mechanical Studies through the Design Phase 3698
 
  • I. Lamas Garcia, N. Biancacci, G. Bregliozzi, M. Calviani, M.I. Frankl, L. Gentini, S.S. Gilardoni, A. Lechner, A. Perillo-Marcone, B. Salvant, N.V. Shetty, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The TDI is a beam intercepting device installed on the two injection lines of the LHC. Its function is to protect the superconducting machine elements during injection in the case of a malfunction of the injection kickers. The TDIS, which will replace the TDI, is foreseen to be installed for high luminosity operation. Due to the higher bunch intensities and smaller beam emittances expected, and following the operational experiences of the TDI, a complete revision of the design of the jaws must be performed, with a main focus on the material selection. Furthermore, the new TDIS will also improve the TDI reliability by means of a robust design of the jaw positioning mechanism, the efficiency of the cooling circuit and by reducing its impedance. A simplified installation procedure and maintenance will also be an important requirement for the new design. This paper introduces the main characteristics of the TDI as LHC injection protection device, showing the needs and requirements for its upgrade. It also discusses the thermo-mechanical simulations that are supporting and guiding the design phase and the material selection, and describes the modifications to be implemented, so far, for this new device.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY023 The Hiradmat 27 Experiment: Exploring High-Density Materials Response at Extreme Conditions for Antiproton Production 3705
SUPSS107   use link to see paper's listing under its alternate paper code  
 
  • C. Torregrosa, M. Bergeret, E. Berthomé, M.E.J. Butcher, M. Calviani, L. Gentini, D. Horvath, J. Humbert, A. Perillo-Marcone, G. Vorraro
    CERN, Geneva, Switzerland
  • C. Torregrosa
    UPV, Valencia, Spain
 
  The HRMT27-Rodtarg- experiment used the HiRadMat facility at CERN to impact intense 440 GeV proton beams onto thin rods -8 mm diameter, 140 length- made of high-density materials such as Ir, W, Ta, Mo among others. The purpose of the experiment has been to reduce uncertainties on the CERN antiproton target material response and assess the material selection for its future redesign. The experiment was designed to recreate the extreme conditions reached in the named target, estimated on an increase of temperature above 2000 °C in less than 0.5 μs and a subsequent compressive-to-tensile pressure wave of several GPa. The goals of the experiment were to validate the hydrocode calculations used for the prediction of the antiproton target response and to identify limits and failure mechanisms of the materials of interest. In order to accomplishing these objectives, the experiment counted on extensive online optical instrumentation pointing at the rod surfaces. Online results suggest that most of the targets suffer important internal damage even from conditions seven times lower than the reached in the AD-target. Tantalum targets clearly showed the best dynamic response.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)