Author: Buaphad, P.
Paper Title Page
TUPOY010 6/9 MeV S-band Standing Wave Accelerating Structure for Container X-ray Inspection System at RTX 1924
 
  • P. Buaphad, H.D. Park, S. Song, S.Y. Yoo
    RTX, Daejeon, Republic of Korea
  • H.K. Cha, S.S. Cha, J.H. Ha, Y. Kim, B.C. Lee
    KAERI, Daejon, Republic of Korea
 
  Recently, there is a need of X-ray inspection system around the world to combat terrorism, drug and weapons smuggling, illegal immigration, and trade fraud. A compact standing wave (SW) linear accelerator (linac) for container X-ray inspection system has been produced at Radiation Technology eXcellence (RTX) to meet this growing need. The RF accelerating structure uses standing wave side-coupled structure fed by a 5 MW e2v magnetron with frequency of 2856 MHz. The electrons are accelerated from DC gun with energy of 25 keV to the final energy of 6 or 9 MeV at the X-ray target and generate X-ray with the dose rate of 8 Gy/min at 1 m after X-ray target. In this paper, we describe the design and optimization of side-coupled RF structure operating at π/2 mode. The beam dynamic of particle along the RF structure is also included in this paper by using ASTRA code.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR052 Development of EPICS Control System for ODA Magnet Power Supplies and GigE CCD Camera 2392
 
  • S.S. Cha, J.H. Ha, J.H. Kim, Y. Kim
    KAERI, Dae-jeon, Republic of Korea
  • P. Buaphad
    RTX, Daejeon, Republic of Korea
  • S.D. Yang
    Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do, Republic of Korea
 
  The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been op-erating a 10 MeV RF electron linear accelerator, which is used for electron beam irradiation. The beam power and energy of the RF electron linear accelerator are 10 kW and 10 MeV. The accelerator is composed of an electron gun, an S-band (= 2856 MHz) accelerating structure, a klystron, electromagnetic solenoids, a scanning electromagnet, an RF driver, a modulator, and a chiller. The linac components have deteriorated due to a long operation time of 9 years. In this paper, we described Experimental Physics and Industrial Control System (EPICS) to control ODA magnet power sup-plies for solenoids and steering magnets of the 10 MeV electron beam irradiation accelerator.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)