Author: Boria, V.E.
Paper Title Page
WEPOR016 Pre-alignment of Accelerating Structures for Compact Acceleration and High Gradient using In-situ Radiofrequency Methods 2696
SUPSS078   use link to see paper's listing under its alternate paper code  
 
  • N. Galindo Munoz, N. Catalán Lasheras, A. Grudiev
    CERN, Geneva, Switzerland
  • V.E. Boria
    DCOM-iTEAM-UPV, Valencia, Spain
  • A. Faus-Golfe
    IFIC, Valencia, Spain
 
  Funding: PACMAN is founded under the European Union's 7th Framework Program Marie Curie Actions, grant PITN-GA-2013-606839
To achieve a high accelerating gradient of 100 MV/m, the CLIC project under study at CERN uses a 23 cm long tapered normal-conducting travelling wave Accelerating Structure (AS) operating at 12 GHz. Minimisation of the long-range wakefields (WF) is assured by damping of the HOM through four radial waveguides in each cell without distorting the accelerating mode. As an extension of them, there are four bent waveguides called WF monitors (WFM) in the middle cell with two RF pick-ups. To obtain a small beam emittance in the collision point, micro-metric pre-alignment of the AS is required. We work to find the electrical centre of the AS through the use of the asymmetry in the RF scattering parameters created by an off-centre conductive wire, stretched along the axis. The accuracy required is of 7 μm with a resolution of 3.5 μm for the WFM signals including the acquisition electronics. Our simulations have shown that a resolution of 1 μm is possible using a calibrated VNA. Measurement results and improvements of the final accuracy will be presented and discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)