Author: Bohl, T.
Paper Title Page
MOPOY058 Removing Known SPS Intensity Limitations for High Luminosity LHC Goals 989
 
  • E.N. Shaposhnikova, T. Argyropoulos, T. Bohl, P. Cruikshank, B. Goddard, T. Kaltenbacher, A. Lasheen, J. Perez Espinos, J. Repond, B. Salvant, C. Vollinger
    CERN, Geneva, Switzerland
 
  In preparation of the SPS as an LHC injector its impedance was significantly reduced in 1999 - 2000. A new SPS impedance reduction campaign is planned now for the High Luminosity (HL)-LHC project, which requires bunch intensities twice as high as the nominal one. One of the known intensity limitations is a longitudinal multi-bunch instability with a threshold 3 times below this operational intensity. The instability is presently cured using the 4th harmonic RF system and controlled emittance blow-up, but reaching the HL-LHC parameters cannot be assured without improving the machine impedance. Recently the impedance sources responsible for this instability were identified and implementation of their shielding and damping is foreseen during the next long shutdown (2019 - 2020) in synergy with two other important upgrades: amorphous carbon coating of (part of) the vacuum chamber against the e-cloud effect and rearrangement of the 200 MHz RF system. In this paper the strategy of impedance reduction is presented together with beam intensity achievable after its realisation. The potential effect of other proposals on remaining limitations is also considered.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR027 CERN's Fixed Target Primary Ion Programme 1297
 
  • D. Manglunki, M.E. Angoletta, J. Axensalva, G. Bellodi, A. Blas, M.A. Bodendorfer, T. Bohl, S. Cettour-Cave, K. Cornelis, H. Damerau, I. Efthymiopoulos, A. Fabich, J.A. Ferreira Somoza, A. Findlay, P. Freyermuth, S.S. Gilardoni, S. Hancock, E.B. Holzer, S. Jensen, V. Kain, D. Küchler, A.M. Lombardi, A.I. Michet, M. O'Neil, S. Pasinelli, R. Scrivens, R. Steerenberg, G. Tranquille
    CERN, Geneva, Switzerland
 
  The renewed availability of heavy ions at CERN for the needs of the LHC programme has triggered the interest of the fixed-target community. The project, which involves sending several species of primary ions at various energies to the North Area of the Super Proton Synchrotron, has now entered its operational phase. The first argon run, with momenta ranging from 13 AGeV/c to 150 AGeV/c, took place from February 2015 to April 2015. This paper presents the status of the project, the performance achieved thus far and an outlook on future plans.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOR009 Single Bunch Longitudinal Instability in the CERN SPS 1670
SUPSS055   use link to see paper's listing under its alternate paper code  
 
  • A. Lasheen, T. Bohl, S. Hancock, T. Roggen, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
  • E. Radvilas
    Gediminas Technical University, Vilnius, Lithuania
 
  The longitudinal single bunch instability observed in the SPS leads to uncontrolled emittance blow-up and limits the quality of high intensity beams required for the High Luminosity LHC and AWAKE projects at CERN. The present SPS impedance model developed from a thorough survey of machine elements was used in macro-particle simulations (with the code BLonD) of the bunch behavior through the acceleration cycle. Comparison of simulations with measurements of the synchrotron frequency shift, performed on the SPS flat bottom to probe the impedance, show a reasonable agreement. During extensive experimental studies various beam and machine parameters (bunch intensity, longitudinal emittance, RF voltage, with single and double RF systems) were scanned in order to further benchmark the SPS impedance model with measurements and to better understand the mechanism behind the instability. It was found that the dependence of instability threshold on longitudinal emittance and beam energy has an unexpected non-monotonic behavior, leading to islands of (in)stability. The results of this study are presented and can be used to define possible parameter settings for the future CERN projects.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY039 RF Synchronization and Distribution for AWAKE at CERN 3743
 
  • H. Damerau, D. Barrientos, T. Bohl, A.C. Butterworth, S. Döbert, W. Höfle, J.C. Molendijk, S.F. Rey, U. Wehrle
    CERN, Geneva, Switzerland
  • J.T. Moody, P. Muggli
    MPI-P, München, Germany
 
  The Advanced Wakefield Experiment at CERN (AWAKE) requires two particle beams and a high power laser pulse to arrive simultaneously in a rubidium plasma cell. A proton bunch from the SPS extracted about once every 30 seconds must be synchronised with the AWAKE laser and the electron beam pulsing at a repetition rate of 10 Hz. The latter is directly generated using a photocathode triggered by part of the laser light, but the exact time of arrival in the plasma cell still depends on the phase of the RF in the accelerating structure. Each beam requires RF signals at characteristic frequencies: 6 GHz, 88.2 MHz and 10 Hz for the synchronisation of the laser pulse, 400.8 MHz and 8.7 kHz for the SPS, as well as 3 GHz to drive the accelerating structure of the electron beam. A low-level RF system has been designed to generate all signals derived from a common reference. Additionally precision triggers, synchronous with the arrival of the beams, will be distributed to beam instrumentation equipment. To suppress delay drifts of the several kilometer long optical fibres between AWAKE and the SPS RF systems, a compensated fibre link is being developed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR055 Characterisation of the SPS Slow-extraction Parameters 3918
 
  • F.M. Velotti, W. Bartmann, T. Bohl, C. Bracco, K. Cornelis, M.A. Fraser, B. Goddard, V. Kain, L.S. Stoel
    CERN, Geneva, Switzerland
 
  The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain but its main users are the fixed-target experiments located in the North Area (NA). The beams, which are among the most intense circulating in the SPS, are extracted to the NA over several thousands of turns by exploiting a third-integer resonant extraction. The unavoidable losses intrinsic to such an extraction makes its optimisation one of the main priorities for operation, to reduce beam induced activation of the machine. The settings of the extraction systems, together with the tune sweep speed and the beam characteristics (momentum spread, emittance, etc.) are the parameters that can be controlled for spill and loss optimisation. In this paper, the contribution of these parameters to the slow-extraction spill quality are investigated through tracking simulations. The simulation model is compared with beam measurements and optimisations suggested.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)