Author: Blokland, W.
Paper Title Page
MOPMR055 Radiation-Resistant Fiber Optic Strain Sensors for SNS Target Instrumentation 371
 
  • Y. Liu, W. Blokland, J.D. Bryan, A. Rakhman, B.W. Riemer, R.L. Sangrey, M. Wendel, D.E. Winder
    ORNL, Oak Ridge, Tennessee, USA
  • A. Rakhman
    UTK, Knoxville, Tennessee, USA
  • R. Strum
    San Diego State University, San Diego, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
Measurement of stresses and strains in the mercury target vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. Owing to their compactness, easy system integration, and invulnerability to the electromagnetic interference, fiber optic strain sensors have been installed into the SNS target module starting from the fall of 2015. In this talk, we report on the development of radiation-resistant fiber optic strain sensors for subsequent generations of SNS target instrumentation. The sensors are extrinsic Fabry-Perot interferometers (EFPIs) made from fluorine-doped single-mode fibers. The radiation induced loss of the fiber has been measured in the SNS target 13 at the energy-on-target level exceeding 500 MWhr which results in peak doses on fiber of more than 109 Gy. A superluminescent diode laser at 1300 nm is used as the light source and the strain is measured in real-time using quadrature phase shifted signals generated from a local interferometer. We have demonstrated successful measurements of strains from 1 to 1000 με at a kHz frequency range on a test plate using the developed interrogation optical system.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY031 A Holistic Approach to Accelerator Reliability Modeling 4163
 
  • M. Reščič, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • W. Blokland
    ORNL, Oak Ridge, Tennessee, USA
 
  Reliability has been identified as a key factor limiting the development of certain particle accelerator applications, for example Accelerator-Driven Systems (ADS) for energy production and waste-transmutation*. Previous studies of particle accelerator reliability have been undertaken using conventional techniques, such as Reliability Block Diagrams (RBD), Fault Tree Analysis (FTA), etc. Although limited data surrounding components and their failure modes limits the applicability of conventional techniques for analysing the reliability of particle accelerators. In addition industrial applications of particle accelerators, i.e. energy production, require a real time response to failure. In this paper we examine a holistic approach to accelerator reliability modelling using Electric Network Frequency (ENF) criterion to look for emergent behaviour of the particle accelerator, from complex datasets, such as beam current/charge, created by the diagnostics systems during the machines operation. To look for predictive characteristics just prior to a machine trip.
* Report from the DOE ADS White Paper Working Group, Stuart Henderson, Fermilab, October 26, 2011
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)