Author: Besana, M.I.
Paper Title Page
TUPMW004 Assessment and Mitigation of the Proton-Proton Collision Debris Impact on the FCC Triplet 1410
 
  • M.I. Besana, F. Cerutti, S.D. Fartoukh, R. Martin, R. Tomás
    CERN, Geneva, Switzerland
  • R. Martin
    Humboldt University Berlin, Berlin, Germany
 
  The Future Circular hadron Collider (FCC-hh), which is designed to operate at a centre-of-mass energy of 100 TeV and to deliver ambitious targets in terms of both instantaneous and integrated luminosity, poses extreme challenges in terms of machine protection during operation and with respect to long-term damages. Energy deposition studies are a crucial ingredient for its design. One of the relevant radiation sources are collision debris particles, which de- posit their energy in the interaction region elements and in particular in the superconducting magnet coils of the final focus triplet quadrupoles, to be protected from the risk of quenching and deterioration. In this contribution, the collision debris will be characterised and expectations obtained with FLUKA will be presented, including magnet lifetime considerations. New techniques including crossing angle gymnastics for peak dose deposition mitigation (as recently introduced in the framework of the LHC operation), will be discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW005 Characterization of the Radiation Field in the FCC-hh Detector 1414
 
  • M.I. Besana, F. Cerutti, A. Ferrari, W. Riegler, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  As part of the post-LHC high-energy program, a study is ongoing to design a new 100 km long hadron collider, which is expected to operate at a centre-of-mass energy of 100 TeV and to accumulate up to 30 ab−1, with a peak instantaneous luminosity that could reach 30 1034cm−2s−1. In this context, the evaluation of the radiation load on the detector is a key step for the choice of materials and technologies. In this contribution, a first detector concept will be presented. At the same time, fluence distributions, relevant for detector occupancy, and accumulated damage on materials and electronics will be shown. The effectiveness of a possible shielding configuration, intended to minimise the background in the muon chambers and tracking stations, will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW006 Power Deposition in LHC Magnets Due to Bound-Free Pair Production in the Experimental Insertions 1418
 
  • C. Bahamonde Castro, B. Auchmann, M.I. Besana, K. Brodzinski, R. Bruce, F. Cerutti, J.M. Jowett, A. Lechner, T. Mertens, V. Parma, S. Redaelli, M. Schaumann, N.V. Shetty, E. Skordis, G.E. Steele, R. van Weelderen
    CERN, Geneva, Switzerland
 
  The peak luminosity achieved during Pb-Pb collisions in the LHC in 2015 (3x1027cm-2s−1) well exceeded the design luminosity and is anticipated to increase by another factor 2 after the next Long Shutdown (2019- 2020). A significant fraction of the power dissipated in ultra-peripheral Pb-Pb collisions is carried by ions from bound-free pair production, which are lost in the dispersion suppressors adjacent to the experimental insertions. At higher luminosities, these ions risk to quench superconducting magnets and might limit their operation due to the dynamic heat load that needs to be evacuated by the cryogenic system. In this paper, we estimate the power deposition in superconducting coils and the magnet cold mass and we quantify the achievable reduction by deviating losses to less sensitive locations or by installing collimators at strategic positions. The second option is considered for the dispersion suppressor next to the ALICE insertion, where a selective displacement of losses to a magnet-free region is not possible.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW018 Radiation Load Optimization in the Final Focus System of FCC-hh 1462
SUPSS003   use link to see paper's listing under its alternate paper code  
 
  • R. Martin, M.I. Besana, F. Cerutti, R. Tomás
    CERN, Geneva, Switzerland
 
  With a center-of-mass energy of up to 100 TeV, FCC-hh will produce highly energetic collision debris at the Interaction Point (IP). Protecting the final focus quadrupoles from this radiation is challenging, since the required amount of shielding placed inside the magnets will reduce the free aperture, thereby limiting the β* reach and luminosity. Hence, radiation mitigation strategies that make best use of the available aperture are required. In this paper, we study the possibility to split the first quadrupole Q1 into two quadrupoles with individual apertures, in order to distribute the radiation load more evenly and reduce the peak dose.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)