Author: Beauvais, P.-Y.
Paper Title Page
WEPMR044 Beam Induced Damage Studies of the IFMIF/EVEDA 125 mA CW 9 MeV D+ Linear Accelerator 2373
 
  • F. Scantamburlo, J. Knaster, A. Marqueta
    IFMIF/EVEDA, Rokkasho, Japan
  • P.-Y. Beauvais
    F4E, Germany
  • B. Bolzon, H. Dzitko
    CEA/IRFU, Gif-sur-Yvette, France
  • R. Ichimiya
    JAEA, Aomori, Japan
  • H. Kobayashi
    KEK, Ibaraki, Japan
 
  IFMIF (International Fusion Material Irradiation Facility) will be a Li(d, xn) neutron source providing equivalent neutron spectrum of DT fusion reactions and comparable neutron flux of future commercial reactors. IFMIF, presently in its EVEDA (Engineering Validation and Engineering Design Activities) phase is installing LIPAc (Linear IFMIF Prototype Accelerator) in Rokkasho (Japan), a 125 mA CW 9 MeV deuteron beam as validating prototype of IFMIF accelerators. The MPS of LIPAc manages the interlocks for a fast beam stop during anomalous beam losses or other hazardous situations. High speed processing is essential to achieve MPS goals driven by investment protection principles. Since Bragg's peak depth is dependent of energy, power densities by uncontrolled beam losses can be very damaging at low energies; the MPS principles for LIPAc are validating those for IFMIF. Beam losses may lead to severe damages by excessive thermal stresses, annealing or even burn/melting of materials. Careful studies to set the maximum allowable time for a beam shutdown to prevent undesired scenarios during the accelerator operational life have been undertaken.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY033 Intermediate Commissioning Results of the 70 mA/50 keV H+ and 140 mA/100 keV D+ ECR Injector of IFMIF/LIPAC 2625
 
  • B. Bolzon, N. Chauvin, S. Chel, R. Gobin, F. Harrault, F. Senée, M. Valette
    CEA/DSM/IRFU, France
  • J.M. Ayala, J. Knaster, A. Marqueta, K. Nishiyama, Y. Okumura, M. Perez, G. Pruneri, F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
  • P.-Y. Beauvais, H. Dzitko, D. Gex, G. Phillips
    F4E, Germany
  • L. Bellan
    Univ. degli Studi di Padova, Padova, Italy
  • L. Bellan, M. Comunian, E. Fagotti, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P. Cara, R. Heidinger
    Fusion for Energy, Garching, Germany
  • R. Ichimiya, A. Ihara, Y. Ikeda, A. Kasugai, T. Kikuchi, T. Kitano, M. Komata, K. Kondo, S. Maebara, S. O'hira, M. Sugimoto, H. Takahashi, H. Usami
    JAEA, Aomori, Japan
  • K. Sakamoto
    QST, Aomori, Japan
  • K. Shinto
    Japan Atomic Energy Agency (JAEA), International Fusion Energy Research Center (IFERC), Rokkasho, Kamikita, Aomori, Japan
 
  The LIPAc accelerator aims to operate 125 mA/CW deuteron beam at 9 MeV to validate IFMIF's accelerators that will operate in CW 125 mA at 40 MeV. The different subsystems of LIPAc have been designed and constructed mainly by European labs and are being installed and commissioned in Rokkasho Fusion Center. The 2.45 GHz ECR injector developed by CEA-Saclay is designed to deliver 140 mA/100 keV CW D+ beam with 99% gas fraction ratio. Its LEBT presents a dual solenoid focusing system to transport and match the beam into the RFQ. Its commissioning continues in 2016 in parallel with the RFQ installation. The normalized RMS emittance at the RFQ injection cone is to be within 0.25π mm·mrad to allow 96% transmission through the 9.81 m long RFQ. In order to avoid activation during commissioning, an equal perveance H+ beam of half current and half energy as nominal with deuterons is used. In this article, the commissioning results with 110 mA/100 keV D+ beam and 55 mA/50 keV H+ beam are first reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY035 Machine Protection and Safe Operation of LIPAc Linear Accelerator 4178
 
  • A. Marqueta, J. Knaster, K. Nishiyama
    IFMIF/EVEDA, Rokkasho, Japan
  • P.-Y. Beauvais, H. Dzitko
    F4E, Germany
  • P. Cara
    Fusion for Energy, Garching, Germany
  • H. Kobayashi
    KEK, Ibaraki, Japan
  • I. Podadera
    CIEMAT, Madrid, Spain
 
  A Li(d, xn) fusion relevant neutron source with a broad peak at 14 MeV is indispensable to characterize and qualify suitable structural materials for the plasma facing components in future fusion reactors. LIPAc (Linear IFMIF Prototype Accelerator), presently under its installation and commissioning phase in Rokkasho, will validate the concept of a 40 MeV deuteron accelerator with its 125 mA CW and 9 MeV deuteron beam for a total beam average power of 1.125 MW. The Machine Protection System (MPS) of LIPAc provides the essential interlock function of stopping the beam in case of excessive beam loss or other hazardous situations. However, approaching LIPAc beam commissioning Phase B (including RFQ powered by total 1.6 MW RF power) a risk analysis has been performed on all major technical systems to identify the sources of risk, apply the necessary countermeasures and enhance accelerator availability, avoiding unnecessary beam stop triggers and allowing a fast beam recovery whenever possible. The overall strategy for the machine protection at LIPAc is presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)